A series of Nω-nitro-Nω'-substituted guanidines has been prepared as potential inhibitors of the human Nitric Oxide Synthase (NOS) isoforms. The reported utility of aminoguanidine and nitroarginine in iNOS inhibition points to a potential similar utility for analogs of nitro-guanidine. The compound library was tested against the three isoforms of Nitric Oxide Synthase (eNOS, iNOS and nNOS). Several candidates showed excellent activity and good selectivity for nNOS. One particular compound even demonstrated good selectivity for iNOS. The potential usefulness of such selective inhibitors is discussed.
The molecular pathology of sulfur mustard injury is complex, with at least nine inflammation‐related enzymes and receptors upregulated in the zone of the insult. A new approach wherein inhibitors of these targets have been linked by hydrolyzable bonds, either one to one or via separate preattachment to a carrier molecule, has been shown to significantly enhance the therapeutic response compared with the individual agents. This article reviews the published work of the authors in this drug development domain over the last 8 years.
The natural product 8-methoxypsoralen (methoxsalen or 8-MOP) in combination with long wavelength ultraviolet light (UVA, 320-400 nm), also referred to as PUVA therapy, is used for the treatment of cutaneous proliferative disorders including psoriasis, vitiligo and mycosis fungoides. The use of 8-MOP (3) is limited by its poor water solubility and there remains a need to develop more water-soluble psoralens to enhance bioavailability following oral administration of the drug. In the present studies a water-soluble dimethylaminoethyl ether analog of 8-MOP was synthesized and analyzed for biological activity. This analog, (8-[2-(N,N-dimethylamino)ethoxy]-psoralen hydrochloride (1) [or CAS name: 9-[2-(dimethylamino)ethoxy]-7H-furo[3,2-g][1]benzopyran-7-one, hydrochloride], was found to be significantly more active than 3 in keratinocyte growth inhibition assays (IC50 = 12 nM and 130 nM for 1 and 3, respectively). The partially reduced dihydro derivative of 1, 8-[2-(N,N-dimethylamino)ethoxy]-4',5'-dihydropsoralen hydrochloride (2) [or CAS name: 9-[2-(dimethylamino)ethoxy]-2,3-dihydro-7H-furo[3,2-g][1]benzopyran-7-one, hydrochloride] and the partially reduced 4',5'-dihydro-8-methoxypsoralen (4) lacking the water-solubilizing side-chain were significantly less active. As inhibitors of keratinocyte growth they ranked as IC50 = 13,000 nM and 70,000 nM for 2 and 4, respectively, indicating that an unsaturated furan ring in the psoralen was required for maximal activity. Compound (1) was found to readily intercalate and damage DNA following UVA light treatment as determined by plasmid DNA nicking and unwinding experiments in neutral and alkaline agarose gels. Taken together, these data demonstrate that a water-soluble dimethylaminoethyl ether psoralen targets DNA, is highly active as a photosensitizer, and may be useful in the treatment of skin diseases involving abnormal keratinocyte proliferation.