Severe aortic stenosis (AS) is a common pathological condition in an ageing population imposing significant morbidity and mortality. Based on distinct hemodynamic features, i.e., ejection fraction (EF), transvalvular gradient and stroke volume, four different AS subtypes can be distinguished: (i) normal EF and high gradient, (ii) reduced EF and high gradient, (iii) reduced EF and low gradient, and (iv) normal EF and low gradient. These subtypes differ with respect to pathophysiological mechanisms, cardiac remodeling, and prognosis. However, little is known about metabolic changes in these different hemodynamic conditions of AS. Thus, we carried out metabolomic analyses in serum samples of 40 AS patients (n = 10 per subtype) and 10 healthy blood donors (controls) using ultrahigh-performance liquid chromatography–tandem mass spectroscopy. A total of 1293 biochemicals could be identified. Principal component analysis revealed different metabolic profiles in all of the subgroups of AS (All-AS) vs. controls. Out of the determined biochemicals, 48% (n = 620) were altered in All-AS vs. controls (p < 0.05). In this regard, levels of various acylcarnitines (e.g., myristoylcarnitine, fold-change 1.85, p < 0.05), ketone bodies (e.g., 3-hydroxybutyrate, fold-change 11.14, p < 0.05) as well as sugar metabolites (e.g., glucose, fold-change 1.22, p < 0.05) were predominantly increased, whereas amino acids (e.g., leucine, fold-change 0.8, p < 0.05) were mainly reduced in All-AS. Interestingly, these changes appeared to be consistent amongst all AS subtypes. Distinct differences between AS subtypes were found for metabolites belonging to hemoglobin metabolism, diacylglycerols, and dihydrosphingomyelins. These findings indicate that relevant changes in substrate utilization appear to be consistent for different hemodynamic subtypes of AS and may therefore reflect common mechanisms during AS-induced heart failure. Additionally, distinct metabolites could be identified to significantly differ between certain AS subtypes. Future studies need to define their pathophysiological implications.
With an annual incidence of 250-300 per 100,000 inhabitants, reactive arthritis is not uncommon. However, the fact that Clostridioides difficile infection (CDI) can also lead to this complication is largely unknown. We report on a 69-years-old man who developed reactive arthritis of his right knee joint one week after antibiotic-associated diarrhea with evidence of C. difficile of the hypervirulent ribotype 027. His female partner also became infected with C. difficile ribotype 027, but did not develop reactive arthritis. The further investigation showed that the patient - in contrast to his partner - was HLA-B27 positive and had strong antibody levels against C. difficile. The case history together with the review of 45 other cases described so far shows that C. difficile can also lead to reactive arthritis. C. difficile-associated reactive arthritis (CDARA) is characterized by the fact that patients suffer from diarrhea or colitis after taking antibiotics, toxigenic C. difficile or only the toxins are detectable in the stool and there are no other explanations for the arthritis and diarrhea.
Activation of the alternative pathway of complement is implicated in common neurodegenerative diseases including age-related macular degeneration (AMD). We explored the impact of common variation in genes encoding proteins of the alternative pathway on complement activation in human blood and in AMD. Genetic variation across the genes encoding complement factor H (CFH), factor B (CFB) and component 3 (C3) was determined. The influence of common haplotypes defining transcriptional and translational units on complement activation in blood was determined in a quantitative genomic association study. Individual haplotypes in CFH and CFB were associated with distinct and novel effects on plasma levels of precursors, regulators and activation products of the alternative pathway of complement in human blood. Further, genetic variation in CFH thought to influence cell surface regulation of complement did not alter plasma complement levels in human blood. Plasma markers of chronic activation (split-products Ba and C3d) and an activating enzyme (factor D) were elevated in AMD subjects. Most of the elevation in AMD was accounted for by the genetic variation controlling complement activation in human blood. Activation of the alternative pathway of complement in blood is under genetic control and increases with age. The genetic variation associated with increased activation of complement in human blood also increased the risk of AMD. Our data are consistent with a disease model in which genetic variation in the complement system increases the risk of AMD by a combination of systemic complement activation and abnormal regulation of complement activation in local tissues.
Factor H (FH) is the predominant soluble regulatory protein of the complement system. With a concentration of 300–600 µg/ml in human plasma it acts as a cofactor for the FI‐mediated cleavage of the component C3b to iC3b. Furthermore, it competes with factor B for binding to C3b and C3(H 2 O) and promotes the dissociation of the C3bBb complex (i.e. it has decay accelerating activity). FH is a monomer of about 155 kDa which comprises 20 short consensus repeats (SCR), each of which is composed of nearly 60 amino acid residues. For the screening of a rat liver cDNA library, we used two hybridization probes which had been produced by polymerase chain reaction (PCR). The probes were generated using degenerated primers which corresponded to conserved parts of the human and the murine factor H nucleotide sequences. The entire rat sequence spanned 4240 nucleotides with an open reading frame of 3708 nucleotides. These were preceded by 23 nucleotides of the 5′ untranslated region, followed by a stop codon and a 3′ untranslated region of 478 nucleotides including the polyadenylation‐signal up to the beginning of the poly A tail. Comparison of the rat cDNA‐derived coding sequence revealed identities of 74% to the human and 87% to the mouse FH nucleotide sequence. The translation product of rat FH mRNA was 1236 aa in length (leader sequence included) with an identity of 63% to the human and 81.5% to the murine protein. The degree of glycosylation of rat FH‐M r is about 9.5%. To quantitate FH in rat serum and supernatants of primary cultures of rat hepatocytes (HC), a reliable and sensitive sandwich‐enzyme‐linked immunosorbent assay (ELISA) was established. The concentration of FH in rat serum was calculated to be 238 µg ± 21 µg/ml (mean ± SD). Its concentration in the culture supernatants of HC was upregulated about three‐fold by interferon (IFN)‐γ (100 U/ml).
Allografting patients with human leukocyte antigens (HLA) which are recognized by preformed antibodies constitutes the main cause for hyper-acute or acute rejections. In order to select recipients without these donor-specific antibodies, the complement-dependent cytotoxicity crossmatch (CDC-CM) assay was developed as a standard procedure about forty years ago. The negative outcome of pretransplant crossmatching represents the most important requirement for a successful kidney graft survival. The artificially positive outcomes of CDC-based crossmatches due to the underlying disease Systemic Lupus Erythematosus (SLE), however, may lead to the unjustified refusal of adequate kidney grafts. Two prospective female recipients destined for a living as well as for a cadaver kidney donation, respectively, exhibited positive CDC-based crossmatch outcomes although for both patients no historical immunizing events were known. Furthermore, solid phase-based screening or antibody differentiation analyses never led to positive results. Immediate reruns of the CDC-based crossmatch assays using the alternative antibody monitoring system (AMS-)crossmatch ELISA resulted in unequivocally negative outcomes. Consequently both transplantations were performed without any immunological complications for the hitherto follow-up time of 25 and 28 months, respectively. We here show two case reports demonstrating an alternative methodical approach to circumvent CDC-based artefacts and point to the urgent need to substitute the CDC-based crossmatch procedure at least for special groups of patients.