Facioscapulohumeral muscular dystrophy (FSHD) is an untreatable disease, characterized by asymmetric progressive weakness of skeletal muscle with fatty infiltration. Although the main genetic defect has been uncovered, the downstream mechanisms causing FSHD are not understood. The objective of this study was to determine natural disease state and progression in muscles of FSHD patients and to establish diagnostic biomarkers by quantitative MRI of fat infiltration and phosphorylated metabolites. MRI was performed at 3T with dedicated coils on legs of 41 patients (28 men/13 women, age 34-76 years), of which eleven were re-examined after four months of usual care. Muscular fat fraction was determined with multi spin-echo and T1 weighted MRI, edema by TIRM and phosphorylated metabolites by 3D (31)P MR spectroscopic imaging. Fat fractions were compared to clinical severity, muscle force, age, edema and phosphocreatine (PCr)/ATP. Longitudinal intramuscular fat fraction variation was analyzed by linear regression. Increased intramuscular fat correlated with age (p<0.05), FSHD severity score (p<0.0001), inversely with muscle strength (p<0.0001), and also occurred sub-clinically. Muscles were nearly dichotomously divided in those with high and with low fat fraction, with only 13% having an intermediate fat fraction. The intramuscular fat fraction along the muscle's length, increased from proximal to distal. This fat gradient was the steepest for intermediate fat infiltrated muscles (0.07±0.01/cm, p<0.001). Leg muscles in this intermediate phase showed a decreased PCr/ATP (p<0.05) and the fastest increase in fatty infiltration over time (0.18±0.15/year, p<0.001), which correlated with initial edema (p<0.01), if present. Thus, in the MR assessment of fat infiltration as biomarker for diseased muscles, the intramuscular fat distribution needs to be taken into account. Our results indicate that healthy individual leg muscles become diseased by entering a progressive phase with distal fat infiltration and altered energy metabolite levels. Fat replacement then relatively rapidly spreads over the whole muscle.
The assessment and treatment of post-stroke shoulder pain (PSSP) is largely based on the assumption that pain is due to biomechanical alterations within the shoulder joint after stroke. However, current treatment often provides limited pain relief, leading to a considerable number of patients with persistent pain. This suggests that PSSP may not be merely due to simple nociception from the shoulder joint. A better understanding of the neurophysiological mechanisms underlying the development and perpetuation of PSSP is needed. Here, a theoretical framework for presumed PSSP mechanisms and their assessment is presented based on key concepts applied in pain research. This theoretical framework assumes that although pain may be localized in one region of the body, the mechanisms causing pain may occur at any level of the somatosensory neuro-axis. Detailed assessment of pain complaints and somatosensory abnormalities should, therefore, be a key element in clinical PSSP research. Studies aiming to further characterize somatosensory functions in patients with PSSP (initially) need to take a broad methodological approach including both clinical as well as more experimental pain research tools, such as quantitative sensory testing. A better understanding of pain mechanisms may explain why persistent PSSP and unsatisfactory pain relief are common despite active prevention and treatment strategies and may provide a basis for improved clinical management of PSSP.
We explored the suitability of perceptual and acoustic outcome measures to prepare E-learning based Speech Therapy (EST) efficacy tests regarding speech intelligibility in dysarthric speakers. Eight speakers with stroke (n=3), Parkinson's disease (n=4) and traumatic brain injury (n=1) participated in a 4 weeks EST trial. A repeated measures design was employed. Perceptual measures were (a) scale ratings for "ease of intelligibility" and "pleasantness" in continuous speech and (b) orthographic transcription scores of semantically unpredictable sentences. Acoustic measures were (c) "intensity during closure" (ΔIDC) in the occlusion phase of voiceless plosives, (d) changes in the vowel space of /a/, /e/ and /o/ and (e) the F0 variability in semantically unpredictable sentences. The only consistent finding concerned an increased (instead of the expected decreased) ΔIDC after EST, possibly caused by increased speech intensity without articulatory adjustments. The importance of suitable perceptual and acoustic measures for efficacy research is discussed.
Diese Bachelorarbeit bietet einen neuen Ansatz fur das Vergleichen mehrerer automatisch segmentierender Algorithmen von medizinischen 3D-Bildern. Dabei werden von Experten manuell segmentierte Referenz-Daten als Ground Truth verwendet. Nach Eingabe von zu testenden Samples werden diese global, lokal und regional evaluiert. Dabei werden mehrere Algorithmen miteinander verglichen und Empfehlungen ausgegeben, welcher Algorithmus im Allgemeinen oder in einzelnen Regionen zum Segmentieren benutzt werden sollte. Das hierbei erstellte Programm bietet dabei sowohl interaktiv-visuelle als auch analytische Sichten auf die zu evaluierenden Samples. Die Entwickler der Algorithmen konnen mit diesen Informationen ihre Algorithmen evaluieren und verbessern, was bei der automatischen Segmentierung von medizinischen Bildern sehr hilfreich sein kann. Das im Rahmen dieser Arbeit erstellte Programm ist dabei auf den Vergleich von bis zu sechs Algorithmen ausgerichtet, kann jedoch prinzipiell auch fur den Vergleich von mehr Datensatze gleichzeitig benutzt werden.