Three recent clinical trials on the pharmacologic treatment of idiopathic pulmonary fibrosis (IPF) mark a new chapter in the management of patients suffering from this very severe fibrotic lung disease. This review article summarizes the published investigations on the preclinical studies of three novel IPF drugs, namely pirfenidone, nintedanib, and N-acetylcysteine (NAC). In addition, the study protocols, differences, and the main findings in the recent clinical trials of these pharmacological treatments are reviewed. The strategy for drug development and the timeline from the discovery to the clinical use have been very different in these regimens. Pirfenidone was discovered in 1976 but only recently received approval in most countries, and even now its exact mechanism of action is unknown. On the contrary, nintedanib (BIBF1120) was identified in large drug screening tests as a very specific inhibitor of certain tyrosine kinases, but no published data on preclinical tests existed until 2014. NAC, a mucolytic drug with an antioxidant mechanism of action was claimed to possess distinct antifibrotic properties in several experimental models but proved to be ineffective in a recent randomized placebo-controlled trial. At present, no curative treatment is available for IPF. A better understanding of the molecular mechanisms of IPF as well as relevant preclinical tests including animal models and in vitro experiments on human lung cells are needed to promote the development of therapeutic drugs.
COPD is underdiagnosed and its early assessment is problematic. It has been suggested that symptomatic smokers with normal FEV1/FVC (Stage 0 COPD, GOLD criteria) can develop COPD in the future. Potential early biomarkers in COPD include the matrix metalloproteinases (MMPs). It is not yet known, whether alterations in MMP expression are associated with smoking alone or with the risk of developing COPD. In this cross-sectional study MMP-8, MMP-9 and MMP-12 were determined from induced sputum and plasma by ELISA, immunocytochemistry, zymography, and/or Western blot in non-smokers (n=32), smokers with symptoms (Stage 0, GOLD criteria) (n=23) or without symptoms (n=23). Only MMP-8 differentiated Stage 0 COPD from non-symptomatic smokers (p = 0.02). MMP-9 levels were significantly elevated in the induced sputum of non-symptomatic smokers and Stage 0 COPD (p = 0.01, p < 0.001) compared to non-smokers, but did not differ between the two subgroups of smokers. MMP-12 was higher only at Stage 0 compared to non-smokers (p = 0.04). MMP-8, MMP-9 and MMP-12 immunoreactivity was localized in macrophages and neutrophils, especially in smokers. MMP-8 levels correlated significantly with the small airway flow parameters (MEF50, MEF25) (p = 0.005 and p = 0.0004) and markers of neutrophil activation (myeloperoxidase, lactoferrin). In conclusion MMP-8 may differentiate Stage 0 from healthy smokers.
Pleural mesothelioma (MPM) is an aggressive malignancy with an average patient survival of only 10 months. Interestingly, about 5%-10% of the patients survive remarkably longer. Prior studies have suggested that the tumor immune microenvironment (TIME) has potential prognostic value in MPM. We hypothesized that high-resolution single-cell spatial profiling of the TIME would make it possible to identify subpopulations of patients with long survival and identify immunophenotypes for the development of novel treatment strategies.We used multiplexed fluorescence immunohistochemistry (mfIHC) and cell-based image analysis to define spatial TIME immunophenotypes in 69 patients with epithelioid MPM (20 patients surviving ≥ 36 months). Five mfIHC panels (altogether 21 antibodies) were used to classify tumor-associated stromal cells and different immune cell populations. Prognostic associations were evaluated using univariate and multivariable Cox regression, as well as combination risk models with area under receiver operating characteristic curve (AUROC) analyses.We observed that type M2 pro-tumorigenic macrophages (CD163+pSTAT1-HLA-DRA1-) were independently associated with shorter survival, whereas granzyme B+ cells and CD11c+ cells were independently associated with longer survival. CD11c+ cells were the only immunophenotype increasing the AUROC (from 0.67 to 0.84) when added to clinical factors (age, gender, clinical stage, and grade).High-resolution, deep profiling of TIME in MPM defined subgroups associated with both poor (M2 macrophages) and favorable (granzyme B/CD11c positivity) patient survival. CD11c positivity stood out as the most potential prognostic cell subtype adding prediction power to the clinical factors. These findings help to understand the critical determinants of TIME for risk and therapeutic stratification purposes in MPM.
Abstract We report the first long-term follow-up of a randomized trial (NCT04978259) addressing the effects of remdesivir on recovery (primary outcome) and other patient-important outcomes one year after hospitalization resulting from COVID-19. Of the 208 patients recruited from 11 Finnish hospitals, 198 survived, of whom 181 (92%) completed follow-up. At one year, self-reported recovery occurred in 85% in remdesivir and 86% in standard of care (SoC) (RR 0.94, 95% CI 0.47-1.90). We infer no convincing difference between remdesivir and SoC in quality of life or symptom outcomes ( p > 0.05). Of the 21 potential long-COVID symptoms, patients reported moderate/major bother from fatigue (26%), joint pain (22%), and problems with memory (19%) and attention/concentration (18%). In conclusion, after a one-year follow-up of hospitalized patients, one in six reported they had not recovered well from COVID-19. Our results provide no convincing evidence of remdesivir benefit, but wide confidence intervals included possible benefit and harm.
Background: Idiopathic pulmonary fibrosis (IPF) is a disease characterized by lung restriction and diffusion capacity disturbance. The Swedish IPF registry was launched 2014 with the aim of providing real-life data both at diagnosis and for follow-up. Forced vital capacity (FVC) is used as a common measurement of disease stage and a predictor of progression. In the present study, we compared FVC with static lung volumes, and diffusion capacity for carbon monoxide (DlCO). Methods: Data from patients, at diagnosis, between January 1, 2014 and December 31, 2017 were assessed. Demographics, dynamic spirometry, body plethysmography and DlCO were collected. Results: Two hundred and fifty-five patients, 187 (73.3%) male and 68 (26.7%) female, were included (mean age 72.2±7.47 years; 27.8% never smokers, 62.4% ex-smokers, 3.5% current smokers). Mean FVC% was 75.5±18.1 (n=63) and 70.7±15.4 (n=151), TLC% 71.7±14.3 (n=42) and 64.1±12.2 (n=111), DlCO 49.5±16.4 (n=49) and 47.5±14.5 (n=127) for female and male patients, respectively. The proportion of IPF patients with abnormal values (<80% of predicted) was for FVC% 67.7% (female 57.1%, male 73.5%, p=0.02), for TLC% 83.0% (female 71.4%, male 87.4%, p=0.02) and for DlCO 96.0% (female 93.9%, male 96.9%, p=0.4). A significant difference was seen between the abnormal proportions of FVC% and TLC% (p=0.002) and between FVC% and DlCO (p<0.001). Conclusions: TLC and DlCO are more sensitive measures than FVC for staging of IPF. Females seem to have better preserved lung function at diagnosis than men, which may be explained by an earlier diagnosis. How these parameters relate to predictors of mortality will be explored.