Thrombin generation (TG) documents hypercoagulability. TG in platelet-poor plasma is exquisitely sensitive to heparins, which thus must be neutralized before testing. Heparinase and hexadimethrine bromide (polybrene) have been used for that purpose, but their effects per se on TG have been poorly studied so far.(i) TG was studied in commercial normal pooled plasma (NPP; CryoCheck® , Cryopep) in absence or presence of neutralizing agents. (ii) NPP was spiked with increasing concentrations of unfractionated heparin (UFH; up to 1.0 IU/mL) or low-molecular-weight heparin (LMWH; enoxaparin up to 1.2 IU/mL) and TG studied after incubation of heparinase (Hepzyme® ; 15 minutes) or polybrene (0.025 mg/mL; 10 minutes).(i) With ThromboScreen reagent to initiate TG, addition of heparinase was associated with increased peak, whereas polybrene caused lengthening of lag time and time to peak, compared with nonsupplemented NPP. (ii) With polybrene, TG was completely restored over the whole range of UFH and LMWH studied. By contrast, heparinase failed to fully restore TG in presence of UFH concentrations ≥0.8 IU/mL or LMWH concentrations ≥1.0 IU/mL. Those effects were matched with detectable tiny residual amounts of non-neutralized heparin (as assessed with an anti-Xa assay) and were less pronounced with a higher picomolar concentration of tissue factor (DrugScreen reagent).Polybrene fully restored TG of heparinized plasma at the expense of an alteration of TG, pointing to the need to use adapted reference ranges. Heparinase failed to do so in presence of high concentrations of both heparins.
Summary In 100 normal singleton pregnancies and in 44 patients with pregnancy hypertension (pre‐eclampsia) linear regression analyses demonstrated highly significant positive correlations between birth weights and late third trimester maternal serum unconjugated oestriol (O 3 ) levels. Correlation coefficients increased, though not significantly, after standardising birth weights according to maternal size, parity and sex of infant. Pregnancy hypertension was classified according to the duration of clinical signs. In 23 patients with short duration pregnancy hypertension (onset 14 days or less before delivery) neither maternal age nor birth weight differed from normal controls. Mid‐pregnancy weights were greater and unconjugated O 3 levels lower and only one infant was growth retarded. Twenty one patients with long duration pregnancy hypertension (onset more than 14 days before delivery) were found on average to be heavier at mid‐pregnancy and older than those in whom the condition was short‐lived. Unconjugated O 3 levels in patients with long duration hypertension were significantly below those in the short duration group. One third of infants born following long duration hypertension were growth retarded.
Nowadays, unfractionated heparin (UFH) use is limited to selected patient groups at high risk of both bleeding and thrombosis (patients in cardiac surgery, in intensive care unit, and patients with severe renal impairment), rendering its management extremely challenging, with many unresolved questions despite decades of use. In this narrative review, we revisit the fundamental concepts of therapeutic anticoagulation with UFH and address five key points, summarizing controversies underlying the use of UFH and discussing the few recent advances in the field: (1) laboratory tests for UFH monitoring have significant limitations; (2) therapeutic ranges are not well grounded; (3) the actual influence of antithrombin levels on UFH's anticoagulant activity is not well established; (4) the concept of UFH resistance lacks supporting data; (5) scarce data are available on UFH use beyond acute venous thromboembolism. We therefore identified key issues to be appropriately addressed in future clinical research: (1) while anti-Xa assays are often considered as the preferred option, we call for a vigorous action to improve understanding of the differences between types of anti-Xa assays and to solve the issue of the usefulness of added dextran; (2) therapeutic ranges for UFH, which were defined decades ago using reagents no longer available, have not been properly validated and need to be confirmed or reestablished; (3) UFH dose adjustment nomograms require full validation.
Abstract Background There is currently no universal and standardized test available to phenotype plasma fibrinolytic system. Aims Our main aims were to evaluate the performances of the ‘global fibrinolysis capacity’ assay (GFC) performed with the Lysis Timer® instrument, and to study the influence of some preanalytical conditions. Method Euglobulin clot lysis time (ECLT) and GFC were performed under several preanalytical conditions. Results GFC showed satisfactory intra- and inter-run precision. Frozen controls and reagents showed stability over the studied period. There was no statistically significant difference between GFC assessed in plasma samples processed at 4 °C or at 20 °C. GFC assessed with frozen-thawed plasma samples was prolonged when compared to fresh samples ( p = 0.014). The centrifugation scheme had no influence on PAI-1 activity levels, GFC and ECLT. Reference interval for GFC ranges from 29.3 (C I90% = 26.9–31.9) to 49.5 (90% CI = 45.9–52.2) minutes. In addition, a preliminary study in 40 healthy volunteers and 43 adult patients referred for investigation of a bleeding disorder was conducted to compare GFC and ECLT assays in their ability to classify samples with shortened or prolonged clot lysis times. Disagreements between ECLT and GFC were observed for 23 samples (out of 83), most of them minor. Conclusion GFC is suitable and convenient for a broad clinical use and can be performed with frozen-thawed plasma samples. Unlike ECLT, GFC is designed to take into account the balance between inhibitors and activators of the fibrinolytic system and could detect both hypo- and hyperfibrinolytic states. Whether it is as suitable as or even better than ECLT to detect a bleeding tendency due to a hyperactive fibrinolytic system deserves to be properly investigated.
This data article accompanies the manuscript entitled: "Prothrombotic Disturbances of hemostasis of Patients with Severe COVID-19: a Prospective Longitudinal Observational Cohort Study" submitted to Thrombosis Research by the same authors. We report temporal changes of plasma levels of an extended set of laboratory parameters during the ICU stay of the 21 COVID-19 patients included in the monocentre cohort: CRP, platelet count, prothrombin time; Clauss fibrinogen and clotting factors II, V and VIII levels, D-dimers, antithrombin activity, protein C, free protein S, total and free tissue factor pathway inhibitor, PAI-1 levels, von Willebrand factor antigen and activity, ADAMTS-13 (plasma levels); and of two integrative tests of coagulation (thrombin generation with ST Genesia) and fibrinolysis (global fibrinolytic capacity - GFC). Regarding hemostasis, we used double-centrifuged frozen citrated plasma prospectively collected after daily performance of usual coagulation tests. Demographic and clinical characteristics of patients and thrombotic and hemorrhagic complications were also collected from patient's electronic medical reports.
Continuous intravenous unfractionated heparin (UFH) is administered routinely in the intensive care unit (ICU) for the anticoagulation of patients, and monitoring is performed by the activated partial thromboplastin time (APTT) or anti-Xa activity. However, these strategies are associated with potentially large time intervals before dose adjustments, which could be detrimental to the patient. The aim of the study was to compare a point-of-care (POCT) version of the APTT to (i) laboratory-based APTT and (ii) measurements of anti-Xa activity in terms of correlation, agreement and turnaround time (TAT). Thirty-five ICU patients requiring UFH therapy were prospectively included and followed longitudinally for a maximum duration of 15 days. UFH was administered according to a local adaptation of Raschke and Amanzadeh’s aPTT nomograms. Simultaneous measurements of POCT-APTT (CoaguCheck® aPTT Test, Roche Diagnostics) on a drop of fresh whole blood, laboratory-based APTT (C.K. Prest®, Stago) and anti-Xa activity (STA®Liquid anti-Xa, Stago) were systematically performed two to six times a day. Antithrombin, C-reactive protein, fibrinogen, factor VIII and lupus anticoagulant were measured. The time tracking of sampling and analysis was recorded. The overall correlation between POCT-APTT and laboratory APTT (n = 795 pairs) was strongly positive (rs = 0.77, p < 0.0001), and between POCT-APTT and anti-Xa activity (n = 729 pairs) was weakly positive (rs = 0.46, p < 0.0001). Inter-method agreement (Cohen’s kappa (k)) between POCT and laboratory APTT was 0.27, and between POCT and anti-Xa activity was 0.30. The median TATs from sample collection to the lab delivery of results for lab-APTT and anti-Xa were 50.9 min (interquartile range (IQR), 38.4−69.1) and 66.3 min (IQR, 49.0−91.8), respectively, while the POCT delivered results in less than 5 min (p < 0.0001). Although the use of the POCT-APTT device significantly reduced the time to results, the results obtained were poorly consistent with those obtained by lab-APTT or anti-Xa activity, and therefore it should not be used with the nomograms developed for lab-APTT.
Introduction Edoxaban is the only anti-Xa inhibitor metabolized in pharmacologically active moiety that could interfere with chromogenic anti-Xa assays, especially in case of drug-drug interactions or physiological disorders. Materials and methods We evaluated the contribution of the main metabolite of edoxaban, edoxaban-M4 (M4), in 79 plasma samples from patients taking edoxaban. The total anti-Xa activity was evaluated on three different chromogenic factor Xa-based assays. Results were compared with a validated ultra-high-performance liquid chromatography coupled with a tandem mass spectrometry measurement. Edoxaban and its active M4 metabolite have also been spiked separately in normal pooled plasma to assess the sensitivity of chromogenic anti-Xa assays to both molecules individually. Results Spiked edoxaban or M4 provided different slopes of linear regression models between chromogenic and chromatographic measurement (from 0.97 for STA Liquid Anti-Xa to 1.10 for Biophen Heparin LRT Low with edoxaban and from 0.70 for Biophen DiXaI High to 0.83 for Biophen Heparin LRT High, respectively). A positive correlation is observed between the increase of the ratio M4/edoxaban with the difference between chromogenic and chromatographic measurements. Conclusion Edoxaban and M4 do not similarly impact chromogenic assays, leading to biased chromogenic estimations of ponderal concentrations. In patient samples, this impact is even more important at low concentrations or in the case of an increase in the M4/edoxaban ratio because of hepatic or renal impairments or in case of drug interactions. This study highlights the limitations and risks of error of expressing results in ponderal concentrations instead of global activity anti-Xa.
Platelet count, indices (mean volume, young—immature platelet fraction) and aggregation are widely used laboratory parameters to investigate primary hemostasis. We performed a systematic, thorough evaluation of the influence of the time-interval since blood draw from 20 healthy individuals and of the anticoagulation of collected blood on such parameters. Blood was anticoagulated with citrate, K2-ethylenediaminetetraacetic acid (EDTA) and hirudin and analyzed 5, 30, 60, 120 and 180 min after blood draw. Multiple electrode aggregometry (MEA) was performed with either hirudin (half-diluted with NaCl) or citrate samples (half-diluted with NaCl or CaCl2 3 mM). Platelet count and indices (Sysmex XN-20) were rather stable over time with EDTA blood. MEA results were lower with citrate blood than with hirudin blood; supplementation with calcium was partially compensatory. MEA results were also lower when performed less than 30 or more than 120 min after blood draw. Platelet clumping, quantitatively estimated with microscope examination of blood smears, was more important in hirudin blood than citrate or EDTA blood and could explain some of the differences observed between preanalytical variables. The results stress once more the importance of preanalytical variables in hemostasis laboratory testing. Decision thresholds based on those tests are only applicable within specific preanalytical conditions.