Abstract Triplet population dynamics of solution cast films of isolated polymorphs of 6,13‐bis(triisopropylsilylethynyl) pentacene (TIPS‐Pn) provide quantitative experimental evidence that triplet excitation energy transfer is the dominant mechanism for correlated triplet pair (CTP) separation during singlet fission. Variations in CTP separation rates are compared for polymorphs of TIPS‐Pn with their triplet diffusion characteristics that are controlled by their crystal structures. Since triplet energy transfer is a spin‐forbidden process requiring direct wavefunction overlap, simple calculations of electron and hole transfer integrals are used to predict how molecular packing arrangements would influence triplet transfer rates. The transfer integrals reveal how differences in the packing arrangements affect electronic interactions between pairs of TIPS‐Pn molecules, which are correlated with the relative rates of CTP separation in the polymorphs. These findings suggest that relatively simple computations in conjunction with measurements of molecular packing structures may be used as screening tools to predict a priori whether new types of singlet fission sensitizers have the potential to undergo fast separation of CTP states to form multiplied triplets.
We use time-resolved vibrational spectroscopy to probe the structural origins of the remarkably long charge recombination lifetimes of halide perovskites. The N–H bend vibrational mode of CH3NH3+ organic cations is coupled to the inorganic perovskite lattice and provides a means to examine the structural fluctuations of the crystalline lattice of CH3NH3PbI3 films. In the excited electronic state, the photogeneration of charge carriers causes the N–H bend vibrational dephasing dynamics to become very sensitive to temperature, revealing large changes in the amplitude of the structural motions of the lattice within a narrow 150–300 K temperature range of the tetragonal phase. The larger amplitude fluctuations of the lattice at elevated temperatures inhibit delocalization of photogenerated charges, causing them to self-trap into large polarons with delocalization lengths that decrease more than 30% as the temperature increases from 150 to 300 K. This self-trapping into large polarons introduces energetic barriers that decrease the capture cross section for electron/hole recombination by an order of magnitude at elevated temperatures. These findings indicate that the slow charge recombination kinetics of halide perovskites underpinning many of their remarkable properties are traced to the formation of energetic barriers that hinder wavefunction overlap of oppositely charged carriers in large polaron states. The findings also suggest that substitution of differently sized ions in halide perovskites can be used to tune the balance of charge transport versus charge recombination for photovoltaic or light-emitting applications because ions influence the structural flexibility and therefore the self-trapping of charge carriers into large polarons.
Free carrier dynamics in organo-halide perovskites can directly reveal information about their carrier lifetimes and indirectly reveal information about trap state distributions, both of which are critical to improving their performance and stability. Time-resolved photoluminescence (TRPL) spectroscopy is commonly used to probe carrier dynamics in these materials, but the technique is only sensitive to radiative decay pathways and may not reveal the true carrier dynamics. We used time-resolved infrared (TRIR) spectroscopy in comparison to TRPL to show that photogenerated charges relax into free carrier states with lower radiative recombination probabilities, which complicates TRPL measurements. Furthermore, we showed that trapped carriers exhibit distinct mid-infrared absorptions that can be uniquely probed using TRIR spectroscopy. We used the technique to demonstrate the first simultaneous measurements of trapped and free carriers in organo-halide perovskites, which opens new opportunities to clarify how charge trapping and surface passivation influence the optoelectronic properties of these materials.
An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.
Singlet fission is an exciton multiplication mechanism in organic materials whereby high energy singlet excitons can be converted into two triplet excitons with near unity quantum yields. As new singlet fission sensitizers are developed with properties tailored to specific applications, there is an increasing need for design rules to understand how the molecular structure and crystal packing arrangements influence the rate and yield with which spin-correlated intermediates known as correlated triplet pairs can be successfully separated—a prerequisite for harvesting the multiplied triplets. Toward this end, we identify new electronic transitions in the mid-infrared spectral range that are distinct for both initially excited singlet states and correlated triplet pair intermediate states using ultrafast mid-infrared transient absorption spectroscopy of crystalline films of 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS-Pn). We show that the dissociation dynamics of the intermediates can be measured through the time evolution of the mid-infrared transitions. Combining the mid-infrared with visible transient absorption and photoluminescence methods, we track the dynamics of the relevant electronic states through their unique electronic signatures and find that complete dissociation of the intermediate states to form independent triplet excitons occurs on time scales ranging from 100 ps to 1 ns. Our findings reveal that relaxation processes competing with triplet harvesting or charge transfer may need to be controlled on time scales that are orders of magnitude longer than previously believed even in systems like TIPS-Pn where the primary singlet fission events occur on the sub-picosecond time scale.
The ligand-nanocrystal boundaries of colloidal quantum dots (QDs) mediate the primary energy and electron transfer processes that underpin photochemical and photocatalytic transformations at their surfaces. We use mid-infrared transient absorption spectroscopy to reveal the influence that ligand structure and bonding to nanocrystal surfaces have on the changes of the excited state surface chemistry of this boundary in PbS QDs and the corresponding impact on charge transfer processes between nanocrystals. We demonstrate that oleate ligands undergo marked changes in their bonding to surfaces in the excitonic excited states of the nanocrystals, indicating that oleate passivated PbS surfaces undergo significant structural changes following photoexcitation. These changes can impact the surface mobility of the ligands and the ability of redox shuttles to approach the nanocrystal surfaces to undergo charge transfer in photocatalytic reactions. In contrast, markedly different transient vibrational features are observed in iodide/mercaptoproprionic acid passivated PbS QD films that result from charge transfer between neighboring nanocrystals and localization of holes at the nanocrystal surfaces near MPA ligands. This ability to distinguish the influence that excitonic excited states vs charge transfer processes have on the surface chemistry of the ligand-nanocrystal boundary lays the groundwork for exploration of how this boundary can be understood and controlled for the design of nanocrystalline materials tailored for specific applications in solar energy harvesting and photocatalytic reactions.
Observations of the hot-phonon bottleneck, which is predicted to slow the rate of hot carrier cooling in quantum confined nanocrystals, have been limited to date for reasons that are not fully understood. We used time-resolved infrared spectroscopy to directly measure higher energy intraband transitions in PbS colloidal quantum dots. Direct measurements of these intraband transitions permitted detailed analysis of the electronic overlap of the quantum confined states that may influence their relaxation processes. In smaller PbS nanocrystals, where the hot-phonon bottleneck is expected to be most pronounced, we found that relaxation of parity selection rules combined with stronger electron-phonon coupling led to greater spectral overlap of transitions among the quantum confined states. This created pathways for fast energy transfer and relaxation that may bypass the predicted hot-phonon bottleneck. In contrast, larger, but still quantum confined nanocrystals did not exhibit such relaxation of the parity selection rules and possessed narrower intraband states. These observations were consistent with slower relaxation dynamics that have been measured in larger quantum confined systems. These findings indicated that, at small radii, electron-phonon interactions overcome the advantageous increase in energetic separation of the electronic states for PbS quantum dots. Selection of appropriately sized quantum dots, which minimize spectral broadening due to electron-phonon interactions while maximizing electronic state separation, is necessary to observe the hot-phonon bottleneck. Such optimization may provide a framework for achieving efficient hot carrier collection and multiple exciton generation.
An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.