SiN-passivated AlGaN/GaN high electron mobility transistors (HEMTs) are exposed to 1 MeV neutron at fluences up to 1015 cm-2. The device shows a negligible degradation at neutron fluences below 1014 cm-2, while the gate leakage current (Ig) slightly changes (the forward IF increases, the reverse IR decreases.) at low fluencies and the IR degrades dramatically at fluences higher than 1014 cm-2. Moreover, near the knee voltage, the transconductance decreases at fluences up to 1015 cm-2, but the Schottky characteristicis become degraded after neutron irradiation. And the 20-hour annealing results do not show any significant annealing recovery effect at room temperature, while the parameters also continues to degrade a little. Therefore, the drain current (near the knee voltage) and the IF degradation of SiN-passivated AlGaN/GaN HEMT can be attributed to the irradiation induced defects in SiN passivation layers, demonstrating that the effectiveness of the SiN layer in passivating surface state in the source-gate spacer and gate-drain spacer is undiminished by neutron irradiation. And the Ohmic contact is so relatively robust to neutron, but the Schottky characteristics degrade obviously. The annealing results prove that the damage induced by neutron may be recovered more difficultly. SiN-passivated AlGaN/GaN HEMT appear to be an attractive candidate for space and terrestrial applications where resistance to displacement damage is required.
The operational mechanism of normally-off type bipolar-mode SiC junction field effect transistor (BJFET) is studied by using a two-dimensional numerical model. Compared with the unipolar-mode SiC JFET, the bipolar-mode can reduce the on-state resistor of the SiC JFET effectively and compromise between the on-state and off-state characteristic of the device. The simulation resluts also show that switching time of BJFET increases remarkably.
To solve the overshoot of acceleration of traditional model,a model with variable desirable distance for vehicle following is presented,which considering limitation of the acceleration.The linear stability theory is applied to the proposed model,the result of stability is different from the Bando′s.Through the simulation result,it is found that when the maximum acceleration is reasonable,the stability of the traffic flow is better with the increase of the value of maximum acceleration.While the traffic flow becomes unstable when the maximum acceleration is too large.The proposed model is favorable to keep the traffic flow stable.
This paper discussed a control system implementation of a lower limbs rehabilitative training device, which includes the hardware and software design of the MCU system and the servo motor drive system. The prototype achieves the aim of simulating the normal human's sit, stand, exercise, walk and other movements. The circuit structure of the control system is novel, easy to manufacture and can obtain higher precision.