This pilot study compares the effect on walking speed, in eight subjects with neuromuscular conditions, of wearing Ligaflex ankle-foot orthoses (AFO), Leafspring orthoses and shoes or with shoes alone. Range of motion, muscle strength and sensation were tested in the lower leg. Subjects underwent a standardized timed 10-m walking test five times in each of the orthoses and shoes as a measure of gait efficiency. A self-administered questionnaire was used to seek the subjects' perceptions of their functional difficulties and their opinions about the relative comfort and stability of these orthoses. Subjects had reduced ranges and strength of dorsiflexion and eversion. Some had proprioceptive deficiencies. Mean walking speed was 0.99 m/s (Leafspring) and 1.1 m/s (Ligaflex or shoes) compared to about 1.3 m/s for a normal population. Repeated measures ANOVA revealed that subjects were significantly slower in Leafspring compared to Ligaflex or to shoes. Questionnaire results rated the Leafspring as least comfortable and the Ligaflex most stable. Providing stability may be more important than assisting foot clearance when weakness is restricted to distal muscles. Further research is required to evaluate the comfort and effectiveness of orthoses to compensate for ankle instability in people with neuromuscular conditions.
Objective We provide succinct, evidence-based and/or consensus-based best practice guidance for the cardiac care of children living with Duchenne muscular dystrophy (DMD) as well as recommendations for screening and management of female carriers of mutations in the DMD -gene. Methods Initiated by an expert working group of UK-based cardiologists, neuromuscular clinicians and DMD-patient representatives, draft guidelines were created based on published evidence, current practice and expert opinion. After wider consultation with UK-cardiologists, consensus was reached on these best-practice recommendations for cardiac care in DMD. Results The resulting recommendations are presented in the form of a succinct care pathway flow chart with brief justification. The guidance signposts evidence on which they are based and acknowledges where there have been differences in opinion. Guidelines for cardiac care of patients with more advanced cardiac dystrophinopathy at any age have also been considered, based on the previous published work of Quinlivan et al and are presented here in a similar format. The recommendations have been endorsed by the British Cardiovascular Society. Conclusion These guidelines provide succinct, reasoned recommendations for all those managing paediatric patients with early or advanced stages of cardiomyopathy as well as females with cardiac dystrophinopathy. The hope is that this will result in more uniform delivery of high standards of care for children with cardiac dystrophinopathy, so improving heart health into adulthood through timely earlier interventions across the UK.
Metabolic myopathies (MM) are rare inherited primary muscle disorders that are mainly due to abnormalities of muscle energy metabolism resulting in skeletal muscle dysfunction. These diseases include disorders of fatty acid oxidation, glyco(geno)lytic muscle disorders and mitochondrial respiratory chain (MRC) disease. Clinically these disorders present with a range of symptoms including infantile hypotonia, myalgia/exercise tolerance, chronic or acute muscle weakness, cramps/spasms/stiffness or episodic acute rhabdomyolysis. The precipitant may be fasting, infection, general anaesthesia, heat/cold or most commonly, exercise. However, the differential diagnosis includes a wide range of both acquired and inherited conditions and these include exposure to drugs/toxins, inflammatory myopathies, dystrophies and channelopathies. Streamlining of existing diagnostic protocols has now become a realistic prospect given the availability of second-generation sequencing. A diagnostic pathway using a 'rhabdomyolysis' gene panel at an early stage of the diagnostic process is proposed. Following detailed clinical evaluation and first-line investigations, some patients will be identified as candidates for McArdle disease/glycogen storage disease type V or MRC disease and these will be referred directly to the specialised services. However, for the majority of patients, second-line investigation is best undertaken through next-generation sequencing using a 'rhabdomyolysis' gene panel. Following molecular analysis and careful evaluation of the findings, some patients will receive a clear diagnosis. Further functional or specific targeted testing may be required in other patients to evaluate the significance of uncertain/equivocal findings. For patients with no clear diagnosis, further investigations will be required through a specialist centre.
Central core disease (CCD) is a dominantly inherited congenital myopathy allelic to malignant hyperthermia (MH) caused by mutations in the RYR1 gene on chromosome 19q13.1. Eleven individuals with RYR1 mutations are described. Four index cases showed features consistent with a congenital myopathy (hypotonia, delayed motor milestones, and skeletal abnormalities including congenital hip dislocation and scoliosis). All four cases and subsequently seven other family members were found to possess novel mutations in the RYR1 gene. The degree of disability varied from one clinically normal individual, to another who had never achieved independent ambulation (the only patient with a de novo mutation). Four cases showed a mild reduction in vital capacity, repeated nocturnal polysomnography showed hypoxaemia in one case. A variety of muscle biopsy features were found; central cores were absent in the youngest case, and the biopsy specimens from two others were more suggestive of mini-core myopathy. In all cases missense mutations in exons 101, 102, and 103 of the RYR1 gene on were found. Future laboratory diagnosis of suspected cases and family members will be less invasive and more accurate with DNA analysis. Clinicians, especially paediatricians and orthopaedic surgeons, should be aware of this disorder because of the potential risk of MH.