In 2 O 3 is the parent oxide semiconductor for many transparent conducting oxides owing to its comparatively wide band gap and reasonable conductivity. The ability to fabricate thin films of In 2 O 3 utilising...
The sol–gel reaction mechanism of 211 MAX phases has proven to be very complex when identifying the intermediate species, chemical processes, and conversions that occur from a mixture of metal salts and gelling agent into a crystalline ternary carbide. With mostly qualitative results in the literature (Cr2GaC, Cr2GeC, and V2GeC), additional analytical techniques, including thermal analysis, powder diffraction, total scattering, and various spectroscopic methods, are necessary to unravel the identity of the chemical compounds and transformations during the reaction. Here, we demonstrate the combination of these techniques to understand the details of the sol–gel synthesis of MAX phase V2PC. The metal phosphate complexes, as well as amorphous/nanocrystalline vanadium phosphate species (V in different oxidation states), are identified at all stages of the reaction and a full schematic of the reaction process is suggested. The early amorphous vanadium species undergo multiple changes of oxidation states while organic species decompose releasing a variety of small molecule gases. Amorphous oxides, analogous to [NH4][VO2][HPO4], V2PO4O, and VO2P2O7 are identified in the dried gel obtained during the early stages of the heating process (300 and 600 °C), respectively. They are carbothermally reduced starting at 900 °C and subsequently react to crystalline V2PC with the excess carbon in the reaction mixture. Through CHN analysis, we obtain an estimate of left-over amorphous carbon in the product which will guide future efforts of minimizing the amount of carbon in sol gel-produced MAX phases which is important for subsequent property studies.
Abstract In perovskite oxide heterostructures, bulk functional properties coexist with emergent physical phenomena at epitaxial interfaces. Notably, charge transfer at the interface between two insulating oxide layers can lead to the formation of a 2D electron gas (2DEG) with possible applications in, e.g., high‐electron‐mobility transistors and ferroelectric field‐effect transistors. So far, the realization of oxide 2DEGs is, however, largely limited to the interface between the single‐crystal substrate and epitaxial film, preventing their deliberate placement inside a larger device architecture. Additionally, the substrate‐limited quality of perovskite oxide interfaces hampers room‐temperature (RT) 2DEG performance due to notoriously low electron mobility. In this work, the controlled creation of an interfacial 2DEG at the epitaxial interface between perovskite oxides BaSnO 3 and LaInO 3 is demonstrated with enhanced RT electron mobility values up to 119 cm 2 Vs −1 —the highest RT value reported so far for a perovskite oxide 2DEG. Using a combination of state‐of‐the‐art deposition modes during oxide molecular beam epitaxy, this approach opens up another degree of freedom in optimization and in situ control of the interface between two epitaxial oxide layers away from the substrate interface. Thus this approach is expected to apply to the general class of perovskite oxide 2DEG systems and to enable their improved compatibility with novel device concepts and integration across materials platforms.
The thermochromic properties of vanadium dioxide (VO2) offer great advantages for energy-saving smart windows, memory devices, and transistors. However, the crystallization of solution-based thin films at temperatures lower than 400°C remains a challenge. Photonic annealing has recently been exploited to crystallize metal oxides, with minimal thermal damage to the substrate and reduced manufacturing time. Here, VO2 thin films, obtained via a green sol-gel process, were crystallized by pulsed excimer laser annealing. The influence of increasing laser fluence and pulse number on the film properties was systematically studied through optical, structural, morphological, and chemical characterizations. From temperature profile simulations, the temperature rise was confirmed to be confined within the film during the laser pulses, with negligible substrate heating. Threshold laser parameters to induce VO2 crystallization without surface melting were found. With respect to furnace annealing, both the crystallization temperature and the annealing time were substantially reduced, with VO2 crystallization being achieved within only 60 s of laser exposure. The laser processing was performed at room temperature in air, without the need of a controlled atmosphere. The thermochromic properties of the lasered thin films were comparable with the reference furnace-treated samples.
Interfacial polar discontinuities play a crucial role in promoting unique two-dimensional electron gases in perovskite systems such as LaInO${}_{3}$/BaSnO${}_{3}$. This study sheds light on the intricate relationship between polar discontinuity compensation and surface segregation, pivotal factors in formation of interfaces. Transmission electron microscopy and density functional theory (DFT) confirm the surface of BaSnO${}_{3}$ (001) are BaO terminated. In contrast, the LaInO${}_{3}$/BaSnO${}_{3}$ interface is found to terminate with SnO2, accompanied by Ba surface segregation as confirmed by electron energy loss spectroscopy and x-ray photoelectron spectroscopy. DFT calculations highlight the significant influence of the polar discontinuity in driving Ba segregation. This study advances our understanding of oxide interfaces by highlighting the critical role of polar discontinuity compensation in shaping the structure of interfaces in perovskite systems.
In perovskite oxide heterostructures, bulk functional properties coexist with emergent physical phenomena at epitaxial interfaces. Notably, charge transfer at the interface between two insulating oxide layers can lead to the formation of a two-dimensional electron gas (2DEG) with possible applications in, e.g., high-electronmobility transistors and ferroelectric field-effect transistors. So far, the realization of oxide 2DEGs is, however, largely limited to the interface between the single-crystal substrate and epitaxial film, preventing their deliberate placement inside a larger device architecture. Additionally, the substrate-limited quality of perovskite oxide interfaces hampers room-temperature 2DEG performance due to notoriously low electron mobility. In this work, we demonstrate the controlled creation of an interfacial 2DEG at the epitaxial interface between perovskite oxides BaSnO$_3$ and LaInO$_3$ with enhanced room-temperature electron mobilities up to 119 cm$^2$/Vs - the highest room-temperature value reported so far for a perovskite oxide 2DEG. Using a combination of state-of-the-art deposition modes during oxide molecular beam epitaxy, our approach opens up another degree of freedom in optimization and $in$-$situ$ control of the interface between two epitaxial oxide layers away from the substrate interface. We thus expect our approach to apply to the general class of perovskite oxide 2DEG systems and to enable their improved compatibility with novel device concepts and integration across materials platforms.
Layered carbides are fascinating compounds due to their enormous structural and chemical diversity, as well as their potential to possess useful and tunable functional properties. Their preparation, however, is challenging and forces synthesis scientists to develop creative and innovative strategies to access high-quality materials. One unique compound among carbides is Mo2Ga2C. Its structure is related to the large and steadily growing family of 211 MAX phases that crystallize in a hexagonal structure (space group P63/mmc) with alternating layers of edge-sharing M6X octahedra and layers of the A-element. Mo2Ga2C also crystallizes in the same space group, with the difference that the A-element layer is occupied by two A-elements, here Ga, that sit right on top of each other (hence named "221" compound). Here, we propose that the Ga content in this compound is variable between 2:2, 2:1, and 2: ≤1 (and 2:0) Mo/Ga ratios. We demonstrate that one Ga layer can be selectively removed from Mo2Ga2C without jeopardizing the hexagonal P63/mmc structure. This is realized by chemical treatment of the 221 phase Mo2Ga2C with a Lewis acid, leading to the "conventional" 211 MAX phase Mo2GaC. Upon further reaction with CuCl2, more Ga is removed and replaced with Cu (instead of fully exfoliating into the Ga-free Mo2CTx MXene), leading to Mo2Ga1–xCuxC still crystallizing with space group P63/mmc, however, with a significantly larger c-lattice parameter. Furthermore, 211 Mo2GaC can be reacted with Ga to recover the initial 221 Mo2Ga2C. All three reaction pathways have not been reported previously and are supported by powder X-ray diffraction (PXRD), electron microscopy, X-ray spectroscopy, and density functional theory (DFT) calculations.
MAX phases with the general formula Mn+1AXn are layered carbides, nitrides, and carbonitrides with varying stacking sequence of layers of M6X octahedra and the A element depending on n. While "211" MAXphases (n = 1) are very common, MAX phases with higher n, especially n ≥ 3, have hardly been prepared. This work addresses open questions regarding the synthesis conditions, structure, and chemical composition of the "514" MAX phase. In contrast to literature reports, no oxide is needed to form the MAX phase, yet multiple heating steps at 1,600 °C are required. Using high-resolution X-ray diffraction, the structure of (Mo1-xVx)5AlC4 is thoroughly investigated, and Rietveld refinement suggests P-6c2 as the most fitting space group. SEM/EDS and XPS show that the chemical composition of the MAX phase is (Mo0.75V0.25)5AlC4. It was also exfoliated into its MXene sibling (Mo0.75V0.25)5C4 using two different techniques (using HF and an HF/HCl mixture) that lead to different surface terminations as shown by XPS/HAXPES measurements. Initial investigations of the electrocatalytic properties of both MXene versions show that, depending on the etchant, (Mo0.75V0.25)5C4 can reduce hydrogen at 10 mA cm–2 with an overpotential of 166 mV (HF only) or 425 mV (HF/HCl) after cycling the samples, which makes them a potential candidate as an HER catalyst.
Abstract Titanium nitride is an exciting plasmonic material, with optical properties similar to gold. However, synthesizing TiN nanocrystals is highly challenging and typically requires solid‐state reactions at very high temperatures (800–1000°C). Here, the synthesis of TiN nanocrystals is achieved at temperatures as low as 350°C, in just 1 h. The strategy comprises molten salt, Mg as reductant and Ca 3 N 2 as nitride source. This brings TiN from the realm of solid‐state chemistry into the field of solution‐based synthesis in regular, borosilicate glassware.
We study the photophysical stability of ensemble near-surface nitrogen vacancy (NV) centers in diamond under vacuum and air. The optically detected magnetic resonance contrast of the NV centers was measured following exposure to laser illumination, showing opposing trends in air compared to vacuum (increasing by up to 9% and dropping by up to 25%, respectively). Characterization using X-ray photoelectron spectroscopy (XPS) suggests a surface reconstruction: In air, atmospheric oxygen adsorption on a surface leads to an increase in NV– fraction, whereas in vacuum, net oxygen desorption increases the NV0 fraction. NV charge state switching is confirmed by photoluminescence spectroscopy. Deposition of ∼2 nm alumina (Al2O3) over the diamond surface was shown to stabilize the NV charge state under illumination in either environment, attributed to a more stable surface electronegativity. The use of an alumina coating on diamond is therefore a promising approach to improve the resilience of NV sensors.