Rationale: Patients with idiopathic bronchiectasis are predominantly female and have an asthenic body morphotype and frequent nontuberculous mycobacterial respiratory infections. They also demonstrate phenotypic features (scoliosis, pectus deformity, mitral valve prolapse) that are commonly seen in individuals with heritable connective tissue disorders.Objectives: To determine whether lumbar dural sac size is increased in patients with idiopathic bronchiectasis as compared with control subjects, and to assess whether dural sac size is correlated with phenotypic characteristics seen in individuals with heritable connective tissue disorders.Methods: Two readers blinded to diagnosis measured anterior–posterior and transverse dural sac diameter using L1–L5 magnetic resonance images of 71 patients with idiopathic bronchiectasis, 72 control subjects without lung disease, 29 patients with cystic fibrosis, and 24 patients with Marfan syndrome. We compared groups by pairwise analysis of means, using Tukey’s method to adjust for multiple comparisons. Dural sac diameter association with phenotypic and clinical features was also tested.Measurements and Main Results: The L1–L5 (average) anterior–posterior dural sac diameter of the idiopathic bronchiectasis group was larger than those of the control group (P < 0.001) and the cystic fibrosis group (P = 0.002). There was a strong correlation between increased dural sac size and the presence of pulmonary nontuberculous mycobacterial infection (P = 0.007) and long fingers (P = 0.003). A trend toward larger dural sac diameter was seen in those with scoliosis (P = 0.130) and those with a family history of idiopathic bronchiectasis (P = 0.149).Conclusions: Individuals with idiopathic bronchiectasis have an enlarged dural sac diameter, which is associated with pulmonary nontuberculous mycobacterial infection, long fingers, and family history of idiopathic bronchiectasis. These findings support our hypothesis that “idiopathic” bronchiectasis development reflects complex genetic variation in heritable connective tissue and associated transforming growth factor-β–related pathway genes.
To develop and validate a simple, reproducible method to assess dural sac size using standard imaging technology.This study was institutional review board-approved. Two readers, blinded to the diagnoses, measured anterior-posterior (AP) and transverse (TR) dural sac diameter (DSD), and AP vertebral body diameter (VBD) of the lumbar vertebrae using MRI images from 53 control patients with pre-existing MRI examinations, 19 prospectively MRI-imaged healthy controls, and 24 patients with Marfan syndrome with prior MRI or CT lumbar spine imaging. Statistical analysis utilized linear and logistic regression, Pearson correlation, and receiver operating characteristic (ROC) curves.AP-DSD and TR-DSD measurements were reproducible between two readers (r = 0.91 and 0.87, respectively). DSD (L1-L5) was not different between male and female controls in the AP or TR plane (p = 0.43; p = 0.40, respectively), and did not vary by age (p = 0.62; p = 0.25) or height (p = 0.64; p = 0.32). AP-VBD was greater in males versus females (p = 1.5 × 10(-8)), resulting in a smaller dural sac ratio (DSR) (DSD/VBD) in males (p = 5.8 × 10(-6)). Marfan patients had larger AP-DSDs and TR-DSDs than controls (p = 5.9 × 10(-9); p = 6.5 × 10(-9), respectively). Compared to DSR, AP-DSD and TR-DSD better discriminate Marfan from control subjects based on area under the curve (AUC) values from unadjusted ROCs (AP-DSD p < 0.01; TR-DSD p = 0.04).Individual vertebrae and L1-L5 (average) AP-DSD and TR-DSD measurements are simple, reliable, and reproducible for quantitating dural sac size without needing to control for gender, age, or height.