Sickle cell disease (SCD) is the most common inherited blood disorder affecting millions of people worldwide. Most patients with SCD experience repeated, unpredictable episodes of severe pain. These pain episodes are the leading cause of emergency department visits among patients with SCD and may last for several weeks. Arguably, the most challenging aspect of treating pain episodes in SCD is assessing and interpreting a patient's pain intensity level.
The study of human mobility is both of fundamental importance and of great potential value. For example, it can be leveraged to facilitate efficient city planning and improve prevention strategies when faced with epidemics. The newfound wealth of rich sources of data—including banknote flows, mobile phone records, and transportation data—has led to an explosion of attempts to characterize modern human mobility. Unfortunately, the dearth of comparable historical data makes it much more difficult to study human mobility patterns from the past. In this paper, we present an analysis of long-term human migration, which is important for processes such as urbanization and the spread of ideas. We demonstrate that the data record from Korean family books (called “ jokbo ”) can be used to estimate migration patterns via marriages from the past 750 years. We apply two generative models of long-term human mobility to quantify the relevance of geographical information to human marriage records in the data, and we find that the wide variety in the geographical distributions of the clans poses interesting challenges for the direct application of these models. Using the different geographical distributions of clans, we quantify the “ergodicity” of clans in terms of how widely and uniformly they have spread across Korea, and we compare these results to those obtained using surname data from the Czech Republic. To examine population flow in more detail, we also construct and examine a population-flow network between regions. Based on the correlation between ergodicity and migration in Korea, we identify two different types of migration patterns: diffusive and convective. We expect the analysis of diffusive versus convective effects in population flows to be widely applicable to the study of mobility and migration patterns across different cultures.
Simple physical models based on fluid mechanics have long been used to understand the flow of vehicular traffic on freeways; analytically tractable models of flow on an urban grid, however, have not been as extensively explored. In an ideal world, traffic signals would be timed such that consecutive lights turned green just as vehicles arrived, eliminating the need to stop at each block. Unfortunately, this "green-wave" scenario is generally unworkable due to frustration imposed by competing demands of traffic moving in different directions. Until now this has typically been resolved by numerical simulation and optimization. Here, we develop a theory for the flow in an idealized system consisting of a long two-way road with periodic intersections. We show that optimal signal timing can be understood analytically and that there are counterintuitive asymmetric solutions to this signal coordination problem. We further explore how these theoretical solutions degrade as traffic conditions vary and automotive density increases.
Sickle Cell Disease (SCD) is a hereditary disorder of red blood cells in humans. Complications such as pain, stroke, and organ failure occur in SCD as malformed, sickled red blood cells passing through small blood vessels get trapped. Particularly, acute pain is known to be the primary symptom of SCD. The insidious and subjective nature of SCD pain leads to challenges in pain assessment among Medical Practitioners (MPs). Thus, accurate identification of markers of pain in patients with SCD is crucial for pain management. Classifying clinical notes of patients with SCD based on their pain level enables MPs to give appropriate treatment. We propose a binary classification model to predict pain relevance of clinical notes and a multiclass classification model to predict pain level. While our four binary machine learning (ML) classifiers are comparable in their performance, Decision Trees had the best performance for the multiclass classification task achieving 0.70 in F-measure. Our results show the potential clinical text analysis and machine learning offer to pain management in sickle cell patients.
Since the 1960s, Democrats and Republicans in the U.S. Congress have taken increasingly polarized positions, while the public's policy positions have remained centrist and moderate. We explain this apparent contradiction by developing a dynamical model that predicts ideological positions of political parties. Our approach tackles the challenge of incorporating bounded rationality into mathematical models and integrates the empirical finding of satisficing decision making---voters settle for candidates who are “good enough" when deciding for whom to vote. We test the model using data from the U.S. Congress over the past 150 years and find that our predictions are consistent with the two major political parties' historical trajectories. In particular, the model explains how polarization between the Democrats and Republicans since the 1960s could be a consequence of increasing ideological homogeneity within the parties.
Background Sickle cell disease (SCD) is an inherited red blood cell disorder affecting millions worldwide, and it results in many potential medical complications throughout the life course. The hallmark of SCD is pain. Many patients experience daily chronic pain as well as intermittent, unpredictable acute vaso-occlusive painful episodes called pain crises. These pain crises often require acute medical care through the day hospital or emergency department. Following presentation, a number of these patients are subsequently admitted with continued efforts of treatment focused on palliative pain control and hydration for management. Mitigating pain crises is challenging for both the patients and their providers, given the perceived unpredictability and subjective nature of pain. Objective The objective of this study was to show the feasibility of using objective, physiologic measurements obtained from a wearable device during an acute pain crisis to predict patient-reported pain scores (in an app and to nursing staff) using machine learning techniques. Methods For this feasibility study, we enrolled 27 adult patients presenting to the day hospital with acute pain. At the beginning of pain treatment, each participant was given a wearable device (Microsoft Band 2) that collected physiologic measurements. Pain scores from our mobile app, Technology Resources to Understand Pain Assessment in Patients with Pain, and those obtained by nursing staff were both used with wearable signals to complete time stamp matching and feature extraction and selection. Following this, we constructed regression and classification machine learning algorithms to build between-subject pain prediction models. Results Patients were monitored for an average of 3.79 (SD 2.23) hours, with an average of 5826 (SD 2667) objective data values per patient. As expected, we found that pain scores and heart rate decreased for most patients during the course of their stay. Using the wearable sensor data and pain scores, we were able to create a regression model to predict subjective pain scores with a root mean square error of 1.430 and correlation between observations and predictions of 0.706. Furthermore, we verified the hypothesis that the regression model outperformed the classification model by comparing the performances of the support vector machines (SVM) and the SVM for regression. Conclusions The Microsoft Band 2 allowed easy collection of objective, physiologic markers during an acute pain crisis in adults with SCD. Features can be extracted from these data signals and matched with pain scores. Machine learning models can then use these features to feasibly predict patient pain scores.