Aims. High-redshift dusty star-forming galaxies (DSFGs) are proposed to be the progenitors of massive quiescent galaxies arising at cosmic noon, providing a crucial insight into the formation, assembly, and early quenching of massive galaxies in the early Universe. However, their high redshift combined with high dust obscuration adds significant difficulties to their redshift measurement, which is mandatory for detailed studies of their physical properties. Blind mm spectral scans are the most unbiased way in prinicple for obtaining accurate spectroscopic redshifts for these sources, but identifying faint molecular and atomic lines within limited telescope time for faint DSFGs is also difficult with these scans. Methods. We developed a new framework to constrain the source redshift. The method jointly accounts for the detection and/or nondetection of spectral lines and the prior information from the photometric redshift and total infrared luminosity from spectral energy distribution analysis. The method uses the estimated total infrared luminosity to predict the line fluxes at given redshifts and generates model spectra. The redshift-dependent spectral models were then compared with the observed spectra to determine the redshift. Results. We applied this joint redshift analysis method to four high- z dusty star-forming galaxy candidates selected from the NIKA2 observations of the HLSJ091828.6+514223 (HLS) field that were further observed by NOEMA with blind spectral scans. These sources only have Herschel SPIRE photometry as ancillary data. They were selected because SPIRE counterparts are faint or entirely lacking and thus favor to select the highest-redshift candidates. The method finds a spectroscopic redshift of 4 in the five NOEMA-counterpart detected sources, with z > 3. Based on these measurements, we derived the CO and [CI] lines and mm continuum fluxes from the NOEMA data and studied the properties of their interstellar medium and star formation. We find cold dust temperatures in some of the HLS sources compared to the general population of submm galaxies, which might be related to the bias introduced by the SPIRE-dropout selection. All sources except for one have a short gas-depletion time of a few hundred million years, which is typical of high- z submm galaxies. The only exception shows a longer gas-depletion time of up to a few billion years. This is comparable to the gas-depletion times of main-sequence galaxies at the same redshift. Furthermore, we identify a possible overdensity of dusty star-forming galaxies at z = 5.2 that is traced by two sources in our sample, as well as a lensed galaxy HLSJ091828.6+514223. Conclusions. We demonstrate that our method when applied to mm-selected DSFGs is able to determine the redshift accurately. This accuracy with only multiple emission lines with a low signal-to-noise ratio shows promising potential for the blind redshift search in large samples of high- z DSFGs, even in the absence of optical to near infrared photometric redshifts.
We present kinematic orientations and high resolution (150 pc) rotation curves for 67 main sequence star-forming galaxies surveyed in CO (2-1) emission by PHANGS-ALMA. Our measurements are based on the application of a new fitting method tailored to CO velocity fields. Our approach identifies an optimal global orientation as a way to reduce the impact of non-axisymmetric (bar and spiral) features and the uneven spatial sampling characteristic of CO emission in the inner regions of nearby galaxies. The method performs especially well when applied to the large number of independent lines-of-sight contained in the PHANGS CO velocity fields mapped at 1'' resolution. The high resolution rotation curves fitted to these data are sensitive probes of mass distribution in the inner regions of these galaxies. We use the inner slope as well as the amplitude of our fitted rotation curves to demonstrate that CO is a reliable global dynamical mass tracer. From the consistency between photometric orientations from the literature and kinematic orientations determined with our method, we infer that the shapes of stellar disks in the mass range of log($\rm M_{\star}(M_{\odot})$)=9.0-10.9 probed by our sample are very close to circular and have uniform thickness.
ABSTRACT We present high-quality Atacama Large Millimeter/submillimeter Array (ALMA) Band 8 observations of the [C i] 3P1–3P0 line and 609-μm dust continuum emission towards the nearby luminous infrared galaxy (LIRG) IRAS F18293-3413, as well as matched resolution (300-pc scale) Band 3 CO J = 1–0 data, which allow us to assess the use of the [C i] 3P1–3P0 line as a total gas mass estimator. We find that the [C i] line basically traces structures detected in CO (and dust) and a mean (median) [C i]/CO luminosity ($L^{\prime }_{\rm [C\, {\small I}]}$/$L^{\prime }_{\rm CO}$) ratio of 0.17 (0.16) with a scatter of 0.04. However, a pixel-by-pixel comparison revealed that there is a radial $L^{\prime }_{\rm [C\, {\small I}]}$/$L^{\prime }_{\rm CO}$ gradient and a superlinear $L^{\prime }_{\rm CO}$ versus $L^{\prime }_{\rm [C\, {\small I}]}$ relation (slope = 1.54 ± 0.02) at this spatial scale, which can be explained by radial excitation and/or line opacity gradients. Based on the molecular gas masses converted from the dust continuum emission, we found that the CO-to-H2 and [C i]-to-H2 conversion factors are relatively flat across the molecular gas disc with a median value of 3.5$^{+1.9}_{-1.3}$ and 20.7$^{+9.2}_{-4.9}$ M⊙ (K km s−1 pc2)−1, respectively. A non-LTE calculation yields that typical molecular gas properties seen in nearby (U)LIRGs ($n_{\rm H_2}$ = 103−4 cm−3, Tkin ∼ 50 K, and $X_{\rm C\, {\small I}}$ = (0.8–2.3) × 10−5) can naturally reproduce the derived [C i]-to-H2 conversion factor. However, we caution that a careful treatment of the physical gas properties is required in order to measure H2 gas mass distributions in galaxies using a single [C i] line. Otherwise, a single [C i] line is not a good molecular gas estimator in a spatially resolved manner.
As we learn more about the multi-scale interstellar medium (ISM) of our Galaxy, we develop a greater understanding for the complex relationships between the large-scale diffuse gas and dust in Giant Molecular Clouds (GMCs), how it moves, how it is affected by the nearby massive stars, and which portions of those GMCs eventually collapse into star forming regions. The complex interactions of those gas, dust and stellar populations form what has come to be known as the ecology of our Galaxy. Because we are deeply embedded in the plane of our Galaxy, it takes up a significant fraction of the sky, with complex dust lanes scattered throughout the optically recognizable bands of the Milky Way. These bands become bright at (sub-)millimetre wavelengths, where we can study dust thermal emission and the chemical and kinematic signatures of the gas. To properly study such large-scale environments, requires deep, large area surveys that are not possible with current facilities. Moreover, where stars form, so too do planetary systems, growing from the dust and gas in circumstellar discs, to planets and planetesimal belts. Understanding the evolution of these belts requires deep imaging capable of studying belts around young stellar objects to Kuiper belt analogues around the nearest stars. Here we present a plan for observing the Galactic Plane and circumstellar environments to quantify the physical structure, the magnetic fields, the dynamics, chemistry, star formation, and planetary system evolution of the galaxy in which we live with AtLAST; a concept for a new, 50m single-dish sub-mm telescope with a large field of view which is the only type of facility that will allow us to observe our Galaxy deeply and widely enough to make a leap forward in our understanding of our local ecology.
We report new radio observations of SDSS J090122.37+181432.3, a strongly lensed star-forming galaxy at $z=2.26$. We image 1.4 GHz (L-band) and 3 GHz (S-band) continuum using the VLA and 1.2 mm (band 6) continuum with ALMA, in addition to the CO(7-6) and CI(${\rm ^3P_2\rightarrow ^3\!P_1}$) lines, all at $\lesssim1.^{\prime\prime}7$ resolution. Based on the VLA integrated flux densities, we decompose the radio spectrum into its free-free (FF) and non-thermal components. The infrared-radio correlation (IRRC) parameter $q_{\rm TIR}=2.65_{-0.31}^{+0.24}$ is consistent with expectations for star forming galaxies. We obtain radio continuum-derived SFRs that are free of dust extinction, finding $\rm {620}_{-220}^{+280}\,M_\odot\,yr^{-1}$, $\rm {230}_{-160}^{+570}\,M_\odot\,yr^{-1}$, and $\rm {280}_{-120}^{+460}\,M_\odot\,yr^{-1}$ from the FF emission, non-thermal emission, and when accounting for both emission processes, respectively, in agreement with previous results. We estimate the gas mass from the CI(${\rm ^3P_2\rightarrow ^3\!P_1}$) line as $M_{\rm gas}=(1.2\pm0.2)\times10^{11}\,M_\odot$, which is consistent with prior CO(1-0)-derived gas masses. Using our new IR and radio continuum data to map the SFR, we assess the dependence of the Schmidt-Kennicutt relation on choices of SFR and gas tracer for $\sim{\rm kpc}$ scales. The different SFR tracers yield different slopes, with the IR being the steepest, potentially due to highly obscured star formation in J0901. The radio continuum maps have the lowest slopes and overall fidelity for mapping the SFR, despite producing consistent total SFRs. We also find that the Schmidt-Kennicutt relation slope is flattest when using CO(7-6) or CI(${\rm ^3P_2\rightarrow ^3\!P_1}$) to trace gas mass, suggesting that those transitions are not suitable for tracing the bulk molecular gas in galaxies like J0901.
Abstract We report the identification of 15 galaxy candidates at z ≥ 9 using the initial COSMOS-Web JWST observations over 77 arcmin 2 through four Near Infrared Camera filters (F115W, F150W, F277W, and F444W) with an overlap with the Mid-Infrared Imager (F770W) of 8.7 arcmin 2 . We fit the sample using several publicly available spectral energy distribution (SED) fitting and photometric redshift codes and determine their redshifts between z = 9.3 and z = 10.9 (〈 z 〉 = 10.0), UV magnitudes between M UV = −21.2 and −19.5 (with 〈 M UV 〉 = −20.2), and rest-frame UV slopes (〈 β 〉 = −2.4). These galaxies are, on average, more luminous than most z ≥ 9 candidates discovered by JWST so far in the literature, while exhibiting similar blue colors in their rest-frame UV. The rest-frame UV slopes derived from SED fitting are blue ( β ∼ [−2.0, −2.7]) without reaching extremely blue values as reported in other recent studies at these redshifts. The blue color is consistent with models that suggest the underlying stellar population is not yet fully enriched in metals like similarly luminous galaxies in the lower-redshift Universe. The derived stellar masses with 〈log10( M ⋆ / M ⊙ )〉 ≈ 8–9 are not in tension with the standard Lambda cold dark matter (ΛCDM) model, and our measurement of the volume density of such UV-luminous galaxies aligns well with previously measured values presented in the literature at z ∼ 9–10. Our sample of galaxies, although compact, is significantly resolved.
Estimation of the far-field centre is carried out in beam auto-alignment. In this paper, the features of the far-field of a square beam are presented. Based on these features, a phase-only matched filter is designed, and the algorithm of centre estimation is developed. Using the simulated images with different kinds of noise and the 40 test images that are taken in sequence, the accuracy of this algorithm is estimated. Results show that the error is no more than one pixel for simulated noise images with a 99% probability, and the stability is restricted within one pixel for test images. Using the improved algorithm, the consumed time is reduced to 0.049 s.
Determining how galactic environment, especially the high gas densities and complex dynamics in bar-fed galaxy centers, alters the star formation efficiency (SFE) of molecular gas is critical to understanding galaxy evolution. However, these same physical or dynamical effects also alter the emissivity properties of CO, leading to variations in the CO-to-H$_2$ conversion factor ($α_\rm{CO}$) that impact the assessment of the gas column densities and thus of the SFE. To address such issues, we investigate the dependence of $α_\rm{CO}$ on local CO velocity dispersion at 150-pc scales using a new set of dust-based $α_\rm{CO}$ measurements, and propose a new $α_\rm{CO}$ prescription that accounts for CO emissivity variations across galaxies. Based on this prescription, we estimate the SFE in a sample of 65 galaxies from the PHANGS-ALMA survey. We find increasing SFE towards high surface density regions like galaxy centers, while using a constant or metallicity-based $α_\rm{CO}$ results in a more homogeneous SFE throughout the centers and disks. Our prescription further reveals a mean molecular gas depletion time of 700 Myr in the centers of barred galaxies, which is overall 3-4 times shorter than in non-barred galaxy centers or the disks. Across the galaxy disks, the depletion time is consistently around 2-3 Gyr regardless of the choice of $α_\rm{CO}$ prescription. All together, our results suggest that the high level of star formation activity in barred centers is not simply due to an increased amount of molecular gas but also an enhanced SFE compared to non-barred centers or disk regions.
We present high-quality ALMA Band 8 observations of the [CI] $^3P_1$-$^3P_0$ line and 609 $μ$m dust continuum emission toward the nearby luminous infrared galaxy (LIRG) IRAS F18293-3413, as well as matched resolution (300-pc scale) Band 3 CO $J=$1-0 data, which allow us to assess the use of the [CI] $^3P_1$-$^3P_0$ line as a total gas mass estimator. We find that the [CI] line basically traces structures detected in CO (and dust), and a mean (median) [CI]/CO luminosity ($L'_{\rm [CI]}$/$L'_{\rm CO}$) ratio of 0.17 (0.16) with a scatter of 0.04. However, a pixel-by-pixel comparison revealed that there is a radial $L'_{\rm [CI]}$/$L'_{\rm CO}$ gradient and a superlinear $L'_{\rm CO}$ vs. $L'_{\rm [CI]}$ relation (slope = 1.54 $\pm$ 0.02) at this spatial scale, which can be explained by radial excitation and/or line opacity gradients. Based on the molecular gas masses converted from the dust continuum emission, we found that the CO-to-H$_2$ and [CI]-to-H$_2$ conversion factors are relatively flat across the molecular gas disk with a median value of 3.5$^{+1.9}_{-1.3}$ and 20.7$^{+9.2}_{-4.9}$ $M_{\odot}$ (K km s$^{-1}$ pc$^2$)$^{-1}$, respectively. A non-LTE calculation yields that typical molecular gas properties seen in nearby (U)LIRGs ($n_{\rm H_2}$ = 10$^{3-4}$ cm$^{-3}$, $T_{\rm kin}$ $\sim$ 50 K, and $X_{\rm CI}$ = (0.8-2.3) $\times$ 10$^{-5}$) can naturally reproduce the derived [CI]-to-H$_2$ conversion factor. However, we caution that a careful treatment of the physical gas properties is required in order to measure H$_2$ gas mass distributions in galaxies using a single [CI] line. Otherwise, a single [CI] line is not a good molecular gas estimator in a spatially resolved manner.
We use ALMA and JVLA observations of the galaxy cluster Cl J1449+0856 at z=1.99, in order to study how dust-obscured star-formation, ISM content and AGN activity are linked to environment and galaxy interactions during the crucial phase of high-z cluster assembly. We present detections of multiple transitions of $^{12}$CO, as well as dust continuum emission detections from 11 galaxies in the core of Cl J1449+0856. We measure the gas excitation properties, star-formation rates, gas consumption timescales and gas-to-stellar mass ratios for the galaxies. We find evidence for a large fraction of galaxies with highly-excited molecular gas, contributing $>$50% to the total SFR in the cluster core. We compare these results with expectations for field galaxies, and conclude that environmental influences have strongly enhanced the fraction of excited galaxies in this cluster. We find a dearth of molecular gas in the galaxies' gas reservoirs, implying a high star-formation efficiency (SFE) in the cluster core, and find short gas depletion timescales $\tau$<0.1-0.4 Gyrs for all galaxies. Interestingly, we do not see evidence for increased specific star-formation rates (sSFRs) in the cluster galaxies, despite their high SFEs and gas excitations. We find evidence for a large number of mergers in the cluster core, contributing a large fraction of the core's total star-formation compared with expectations in the field. We conclude that the environmental impact on the galaxy excitations is linked to the high rate of galaxy mergers, interactions and active galactic nuclei in the cluster core.