Techniques commonly used for fabrication of integrated circuits are utilized to produce long capillary tubes for microminiature chromatographs. Method involves bonding of flat silicon plate to top of spirally grooved silicon chip to close groove and form capillary column.
This paper describes a new technique for measuring trace quantities of gases. The technique involves the use of a reference cell (containing a known amount of the gas being sought) and a sample cell (containing an unknown amount of the same gas) wherein the gas densities are modulated. Light passing through the two cells in sequence is modulated in intensity at the vibrational-rotational lines characteristic of the absorption spectrum for the gas of interest. Since the absorption process is nonlinear, modulating the two absorption cells at two different frequencies gives rise to a heterodyning effect, which in turn introduces sum and difference frequencies in the detected signal. Measuring the ratio of the difference frequency signal for example, to the signal introduced by the reference cell provides a normalized measure of the amount of the gas in the sample cell. The readings produced are thereby independent of source intensity, window transparency, and detector sensitivity. Experimental evaluation of the technique suggests that it should be applicable to a wide range of gases, that it should be able to reject spurious signals due to unwanted gases, and that it should be sensitive to concentrations of the order of 10 to the minus 8th power when used with a sample cell of only 20 cm length.
A new two-channel laser Doppler velocimeter developed for the Ames High Reynolds Channel No. 2 is described. Design features required for the satisfactory operation of the optical system in the channel environment are discussed. Fiber optics are used to transmit the megahertz Doppler signal to the photodetectors located outside the channel pressure vessel, and provision is made to isolate the optical system from pressure and thermal strain effects. Computer-controlled scanning mirrors are used to position the laser beams in the channel flow. Techniques used to seed the flow with 0.5-micron-diam polystyrene spheres avoiding deposition on the test-section windows and porous boundary-layer removal panels are described. Preliminary results are presented with a discussion of several of the factors affecting accuracy.