“in vivo two-photon functional Ca2+ imaging” is a powerful tool to analyze neural circuits of the cerebral cortex in the physiological condition. To monitor activities of excitatory neurons, inhibitory (GABAergic) neurons and astrocytes, we applied this imaging method to visual cortex of transgenic mice, in which GABAergic neurons express fluorescent protein (EGFP or Venus). With this method, we can monitor the neural activities from hundreds of excitatory and GABAergic neurons (and also from astrocytes) in vivo. We found that the difference in response selectivity and ocular dominance plasticity between excitatory and GABAergic neuron in the mouse visual cortex.
Prepared movements are more efficient than those that are not prepared for. Although changes in cortical activity have been observed prior to a forthcoming action, the circuits involved in motor preparation remain unclear. Here, we use in vivo two-photon calcium imaging to uncover changes in the motor cortex during variable waiting periods prior to a forepaw reaching task in mice. Consistent with previous reports, we observed a subset of neurons with increased activity during the waiting period; however, these neurons did not account for the degree of preparation as defined by reaction time (RT). Instead, the suppression of activity of distinct neurons in the same cortical area better accounts for RT. This suppression of neural activity resulted in a distinct and reproducible pattern when mice were well prepared. Thus, the selective suppression of network activity in the motor cortex may be a key feature of prepared movements.
Most neurons in layer VI of the visual cortex project to the dorsal lateral geniculate nucleus (dLGN). These corticogeniculate projection neurons (CG cells) receive top-down synaptic inputs from upper layers (ULs) and bottom-up inputs from the underlying white matter (WM). Use-dependent plasticity of these synapses in layer VI of the cortex has received less attention than in other layers. In the present study, we used a retrograde tracer injected into dLGN to identify CG cells, and, by analyzing EPSPs evoked by electrical stimulation of the UL or WM site, examined whether these synapses show long-term synaptic plasticity. Theta-burst stimulation induced long-term potentiation (LTP) of activated synapses (hom-LTP) and long-term depression (LTD) of nonactivated synapses (het-LTD) in either pathway. The paired-pulse stimulation protocol and the analysis of coefficient variation of EPSPs suggested postsynaptic induction of these changes except UL-induced het-LTD, which may be presynaptic in origin. Intracellular injection of a Ca 2+ -chelator suggested an involvement of postsynaptic Ca 2+ rise in all types of long-term plasticity. Pharmacological analysis indicated that NMDA receptors and type-5 metabotropic glutamate receptors are involved in WM-induced and UL-induced plasticity, respectively. Analysis with inhibitors and/or in transgenic mice suggested an involvement of cannabinoid type 1 receptors and calcineurin in UL-induced and WM-induced het-LTD, respectively. These results suggest that hom-LTP and het-LTD may play a role in switching the top-down or bottom-up regulation of CG cell function and/or in maintaining stability of synaptic transmission efficacy through different molecular mechanisms.
Background Synaptogenesis is a fundamental step in neuronal development. For spiny glutamatergic synapses in hippocampus and cortex, synaptogenesis involves adhesion of pre and postsynaptic membranes, delivery and anchorage of pre and postsynaptic structures including scaffolds such as PSD-95 and NMDA and AMPA receptors, which are glutamate-gated ion channels, as well as the morphological maturation of spines. Although electrical activity-dependent mechanisms are established regulators of these processes, the mechanisms that function during early development, prior to the onset of electrical activity, are unclear. The Eph receptors and ephrins provide cell contact-dependent pathways that regulate axonal and dendritic development. Members of the ephrin-A family are glycosyl-phosphatidylinositol-anchored to the cell surface and activate EphA receptors, which are receptor tyrosine kinases. Methodology/Principal Findings Here we show that ephrin-A5 interaction with the EphA5 receptor following neuron-neuron contact during early development of hippocampus induces a complex program of synaptogenic events, including expression of functional synaptic NMDA receptor-PSD-95 complexes plus morphological spine maturation and the emergence of electrical activity. The program depends upon voltage-sensitive calcium channel Ca2+ fluxes that activate PKA, CaMKII and PI3 kinase, leading to CREB phosphorylation and a synaptogenic program of gene expression. AMPA receptor subunits, their scaffolds and electrical activity are not induced. Strikingly, in contrast to wild type, stimulation of hippocampal slices from P6 EphA5 receptor functional knockout mice yielded no NMDA receptor currents. Conclusions/Significance These studies suggest that ephrin-A5 and EphA5 signals play a necessary, activity-independent role in the initiation of the early phases of synaptogenesis. The coordinated expression of the NMDAR and PSD-95 induced by eprhin-A5 interaction with EphA5 receptors may be the developmental switch that induces expression of AMPAR and their interacting proteins and the transition to activity-dependent synaptic regulation.