ABSTRACT It was recently discovered that the time correlations of repeating fast radio bursts (FRBs) are similar to earthquake aftershocks. Motivated by the association between FRBs and magnetars, here we report correlation function analyses in the time-energy space for the 563 periodic radio pulses and the 579 X-ray short bursts from the magnetar SGR 1935+2154, which is known to have generated FRBs. Although radio pulses are concentrated near the fixed phase of the rotational cycle, we find that when multiple pulses occur within a single cycle, their correlation properties (aftershock production probability, aftershock rate decaying in power of time, and more) are similar to those of extragalactic FRBs and earthquakes. A possible interpretation is that the radio pulses are produced by rupture of the neutron star crust, and the first pulse within one cycle is triggered by external force periodically exerted on the crust. The periodic external force may be from the interaction of the magnetosphere with material ejected in an outburst. For X-ray bursts, we found no significant correlation signal, though correlation on the same time-scale as radio pulses may be hidden due to the long event duration. The aftershock similarity between the periodic radio pulsation and FRBs is surprising, given that the two are energetically very different, and therefore the energy sources would be different. This suggests that the essence of FRB-like phenomena is starquakes, regardless of the energy source, and it is important to search for FRB-like bursts from neutron stars with various properties or environments.
We report the radio and high-energy properties of a new outburst from the radio-loud magnetar 1E 1547.0$-$5408. Following the detection of a short burst from the source with Swift-BAT on 2022 April 7, observations by NICER detected an increased flux peaking at $(6.0 \pm 0.4) \times 10^{-11}$ erg s$^{-1}$ cm$^{-2}$ in the soft X-ray band, falling to the baseline level of $1.7\times10^{-11}$ erg s$^{-1}$ cm$^{-2}$ over a 17-day period. Joint spectroscopic measurements by NICER and NuSTAR indicated no change in the hard non-thermal tail despite the prominent increase in soft X-rays. Observations at radio wavelengths with Murriyang, the 64-m Parkes radio telescope, revealed that the persistent radio emission from the magnetar disappeared at least 22 days prior to the initial Swift-BAT detection and was re-detected two weeks later. Such behavior is unprecedented in a radio-loud magnetar, and may point to an unnoticed slow rise in the high-energy activity prior to the detected short-bursts. Finally, our combined radio and X-ray timing revealed the outburst coincided with a spin-up glitch, where the spin-frequency and spin-down rate increased by $0.2 \pm 0.1$ $μ$Hz and $(-2.4 \pm 0.1) \times 10^{-12}$ s$^{-2}$ respectively. A linear increase in spin-down rate of $(-2.0 \pm 0.1) \times 10^{-19}$ s$^{-3}$ was also observed over 147 d of post-outburst timing. Our results suggest that the outburst may have been associated with a reconfiguration of the quasi-polar field lines, likely signalling a changing twist, accompanied by spatially broader heating of the surface and a brief quenching of the radio signal, yet without any measurable impact on the hard X-ray properties.
Fast Radio Bursts (FRBs) are bright millisecond-duration radio transients that appear about 1,000 times per day, all-sky, for a fluence threshold 5 Jy ms at 600 MHz. The FRB radio-emission physics and the compact objects involved in these events are subjects of intense active debate. To better constrain source models, the Bustling Universe Radio Survey Telescope in Taiwan (BURSTT) is optimized to discover and localize a large sample of rare, high-fluence, nearby FRBs. This is the population most amenable to multi-messenger, multi-wavelength follow-up, allowing deeper understanding of source mechanisms. BURSTT will provide horizon-to-horizon sky coverage with a half power field-of-view (FoV) of $\sim$10$^{4}$ deg$^{2}$, a 400 MHz effective bandwidth between 300-800 MHz, and sub-arcsecond localization, made possible using outrigger stations hundreds to thousands of km from the main array. Initially, BURSTT will employ 256 antennas. After tests of various antenna designs and optimization of system performance we plan to expand to 2048 antennas. We estimate that BURSTT-256 will detect and localize $\sim$100 bright ($\geq$100 Jy ms) FRBs per year. Another advantage of BURSTT's large FoV and continuous operation will be greatly enhanced monitoring of FRBs for repetition. The current lack of sensitive all-sky observations likely means that many repeating FRBs are currently cataloged as single-event FRBs.
It is well known that silicon photomultipliers (SiPMs) are prone to radiation damage. With the increasing popularity of SiPMs among new spaceborne missions, especially on CubeSats, it is of paramount importance to characterize their performance in space environment. In this work, we report the in-orbit ageing of SiPM arrays, so-called multi-pixel photon counters (MPPCs), using measurements acquired by the GRBAlpha and VZLUSAT-2 CubeSats at low Earth orbit (LEO) spanning over three years, which in duration is unique. GRBAlpha is a 1U CubeSat launched on March 22, 2021, to a 550 km altitude sun-synchronous polar orbit (SSO) carrying on board a gamma-ray detector based on CsI(Tl) scintillator readout by eight MPPCs and regularly detecting gamma-ray transients such as gamma-ray bursts and solar flares in the energy range of ~30-900 keV. VZLUSAT-2 is a 3U CubeSat launched on January 13, 2022 also to a 550 km altitude SSO carrying on board, among other payloads, two gamma-ray detectors similar to the one on GRBAlpha. We have flight-proven the Hamamatsu MPPCs S13360-3050 PE and demonstrated that MPPCs, shielded by 2.5 mm of PbSb alloy, can be used in an LEO environment on a scientific mission lasting beyond three years. This manifests the potential of MPPCs being employed in future satellites.
Giant radio pulses (GRPs) are sporadic bursts emitted by some pulsars, lasting a few microseconds. GRPs are hundreds to thousands of times brighter than regular pulses from these sources. The only GRP-associated emission outside radio wavelengths is from the Crab Pulsar, where optical emission is enhanced by a few percent during GRPs. We observed the Crab Pulsar simultaneously at X-ray and radio wavelengths, finding enhancement of the X-ray emission by $3.8\pm0.7\%$ (a 5.4$\sigma$ detection) coinciding with GRPs. This implies that the total emitted energy from GRPs is tens to hundreds of times higher than previously known. We discuss the implications for the pulsar emission mechanism and extragalactic fast radio bursts.
Abstract ASASSN-V J205543.90+240033.5 (ASJ2055) is a possible post-common-envelope binary system. Its optical photometric data show an orbital variation of about 0.52 days and a fast period modulation of P 0 ∼ 9.77 minutes, whose origin is unknown. In this Letter, we report evidence of the stellar oscillation of the companion star as the origin of the fast period modulation. We analyze the photometric data taken by the Transiting Exoplanet Survey Satellite, the Liverpool Telescope, and the Lulin One-meter Telescope. It is found that the period of the 9.77 minutes signal measured in 2022 August is significantly shorter than that in 2021 July/August, and the magnitude of the change is of the order of ∣△ P 0 ∣/ P 0 ∼ 0.0008(4). Such a large variation will be incompatible with the scenario of the white dwarf (WD) spin as the origin of the 9.77 minutes periodic modulation. We suggest that the fast periodic signal is related to the emission from the irradiated companion star rather than that of the WD. Using existing photometric data covering a wide wavelength range, we estimate that the hot WD in ASJ2055 has a temperature of T eff ∼ 80,000 K and is heating the oscillating M-type main-sequence star with T eff ∼ 3500 K on its unirradiated surface. The stellar oscillation of the M-type main-sequence star has been predicted in theoretical studies, but no observational confirmation has been done. ASJ2055, therefore, has the potential to be a unique laboratory for investigating the stellar oscillation of an M-type main-sequence star and the heating effect on stellar oscillation.
We report the detection of orbital modulation, a model solution, and the X-ray properties of a newly discovered contact binary, Two Micron All Sky Survey (2MASS) J11201034−2201340. We serendipitously found this X-ray point source outside the error ellipse when searching for possible X-ray counterparts of γ-ray millisecond pulsars among the unidentified objects detected by the Fermi Gamma-ray Space Telescope. The optical counterpart of the X-ray source (unrelated to the γ-ray source) was then identified using archival databases. The long-term Catalina Real-Time Transient Survey detected a precise signal with a period of days. A follow-up observation made by the Super Light Telescope of Lulin Observatory revealed the binary nature of the object. Utilizing archived photometric data of multi-band surveys, we construct the spectral energy distribution (SED), which is well fit by a K2V spectral template. The fitting result of the orbital profile using the Wilson–Devinney code suggests that 2MASS J11201034-2201340 is a short-period A-type contact binary and the more massive component has a cool spot. The X-ray emission was first noted in observations made by Swift, and then further confirmed and characterized by an XMM-Newton observation. The X-ray spectrum can be described by a power law or thermal Bremsstrahlung. Unfortunately, we could not observe significant X-ray orbital modulation. Finally, according to the SED, this system is estimated to be 690 pc from Earth with a calculated X-ray intensity of erg s−1, which is in the expected range of an X-ray emitting contact binary.
We report the discovery of an X-ray periodicity of ∼265.3 ms from a deep XMM-Newton observation of the radio-quiet γ-ray pulsar, PSR J2021+4026, located at the edge of the supernova remnant G78.2+2.1 (γ-Cygni). The detected frequency is consistent with the γ-ray pulsation determined by the observation of the Fermi Gamma-ray Space Telescope at the same epoch. The X-ray pulse profile resembles the modulation of a hot spot on the surface of the neutron star. The phase-averaged spectral analysis also suggests that the majority of the observed X-rays have thermal origins. This is the third member in the class of radio-quiet pulsars with significant pulsations detected from both X-ray and γ-ray regimes.