The near-exponential growth in the frequency of reintroductions surely indicates that reintroductions are now a highly effective tool to combat the increasing loss of global biodiversity. This chapter discusses the questions regarding risks, the initiation of reintroductions, the refinement of reintroduction techniques and evaluations of reintroduction programme success. It examines key components that comprise the status quo of reintroduction science and proposed crucial advancements where appropriate. The remainder of this chapter also examines the increasing challenges and possible responses of the future, particularly within the context of emerging infectious diseases, increasing habitat loss and climate change. It outlines some of the ways in which rigour could be implemented to improve the success rates - and their definition - of reintroductions. The chapter poses the question of whether reintroductions are on the verge of a disciplinary shift within the conservation toolbox.
SUMMARY Community-based natural resource management has been accused of failing on social, economic or ecological grounds. Balanced assessments are rare, however, particularly in West Africa. This paper examines the first 10 years of Ghana's Wechiau Community Hippo Sanctuary using an evaluation framework that considers socioeconomic and ecological outcomes, as well as resilience mechanisms. Building upon traditional taboos against the killing of hippopotami, this initiative has attempted to conserve an imperilled large mammal, protect biodiversity and alleviate abject poverty amidst a bush meat crisis and complex ethnic diversity. Findings show that the Sanctuary has improved local livelihoods by spurring economic diversification and infrastructure development rates 2–8 times higher than in surrounding communities. Simultaneously, threats to biodiversity have subsided, hippopotamus numbers have remained stable and the Sanctuary's riparian habitats now harbour more bird species than comparable areas nearby. Improved social capital, true empowerment, an equitable distribution of benefits, ecological awareness among children and support for the Sanctuary, even amongst community members who were disadvantaged by its creation, speak to good long-term prospects. Risks remain, some of which are beyond the community's control, but evidence of socioecological resilience suggests that capacity exists to buffer risks and foster sustainability. Lessons learnt at Wechiau translate into recommendations for the planning, implementation and evaluation of future community-based conservation initiatives, including greater interdisciplinary integration and the use of adaptive co-management approaches.
Dispersal is fundamental to the persistence of wild populations. Historically, swift foxes Vulpes velox of the northern Great Plains of North America have been thought to be poor dispersers. Short-grass prairie is optimal habitat for swift foxes but can be fragmented in the northern Great Plains. We wanted to assess whether wild-born, juvenile swift foxes from two proximate but distinct reintroduced populations had potential to move from one population to the other. We found five animals exhibiting long bouts of dispersal, much further than averages previously reported. One female fox traversed the long distance between the two populations and survived for at least three breeding seasons in the wild. We believe our findings are significant for conservation because they show that swift foxes are not poor dispersers and that patches of short-grass prairie previously thought to be too isolated (. 25 km) for natural movement may be recolonized or be suitable for reintroductions of swift foxes.
Winter can be a limiting time of year for many temperate species, who must access depressed prey resources to meet energetic demands. The swift fox (Vulpes velox (Say, 1823)) was extirpated from Canada and Montana (USA) by 1969, but was reintroduced in the 1980s to Canada, and subsequently spread into northern Montana. Swift foxes in this region are at the current northern range edge where winter conditions are harsher and persist longer than in their southern range (i.e., Colorado (USA) to Texas (USA)). We collected fine-scale locational data from swift foxes fitted with global positioning system collars to examine movement and resource-use patterns during winter of 2016–2017 in northeastern Montana. Our results suggest that swift foxes displayed three distinct movement patterns (i.e., resting, foraging, and travelling) during the winter. Distance to road decreased relative probability of use by 39%–46% per kilometre across all movement states and individuals, whereas the influence of topographic roughness and distance to crop field varied among movement states and individuals. Overall, while our findings are based on data from three individuals, our study suggests that across movement states during the critical winter season, swift foxes are likely using topography and areas near roads to increase their ability to detect predators.
Conservation translocations, intentional movements of species to protect against extinction, have become widespread in recent decades and are projected to increase further as biodiversity loss continues worldwide. The literature abounds with analyses to inform translocations and assess whether they are successful, but the fundamental question of whether they should be initiated at all is rarely addressed formally. We used decision analysis to assess northern leopard frog reintroduction in northern Idaho, with success defined as a population that persists for at least 50 years. The Idaho Department of Fish and Game was the decision maker (i.e., the agency that will use this assessment to inform their decisions). Stakeholders from government, indigenous groups, academia, land management agencies, and conservation organizations also participated. We built an age-structured population model to predict how management alternatives would affect probability of success. In the model, we explicitly represented epistemic uncertainty around a success criterion (probability of persistence) characterized by aleatory uncertainty. For the leading alternative, the mean probability of persistence was 40%. The distribution of the modelling results was bimodal, with most parameter combinations resulting in either very low (<5%) or relatively high (>95%) probabilities of success. Along with other considerations, including cost, the Idaho Department of Fish and Game will use this assessment to inform a decision regarding reintroduction of northern leopard frogs. Conservation translocations may benefit greatly from more widespread use of decision analysis to counter the complexity and uncertainty inherent in these decisions. History: This paper has been accepted for the Decision Analysis Special Issue on Decision Analysis to Advance Environmental Sustainability. Funding: This work was supported by the Wilder Institute/Calgary Zoo, the U.S. Fish and Wildlife Service [Grant F18AS00095], the NSF Idaho EPSCoR Program and the National Science Foundation [Grant OIA-1757324], and the Hunt Family Foundation. Supplemental Material: The online appendix is available at https://doi.org/10.1287/deca.2023.0472 .
With the loss of biodiversity accelerating, conservation translocations such as reintroductions are becoming an increasingly common conservation tool. Conservation translocations must source individuals for release from either wild or captive-bred populations. We asked what proportion of North American conservation translocations rely on captive breeding and to what extent zoos and aquaria (hereafter zoos) fulfill captive breeding needs. We searched for mention of captive breeding and zoo involvement in all 1863 articles included in the North American Conservation Translocations database, which comprises journal articles and grey literature published before 2014 on conservation translocations in Canada, the United States, Mexico, the Caribbean, and Central America before 2014 as identified by a comprehensive literature review. Conservation translocations involved captive breeding for 162 (58%) of the 279 animal species translocated. Fifty-four zoos contributed animals for release. The 40 species of animals bred for release by zoos represented only 14% of all animal species for which conservation translocations were published and only 25% of all animal species that were bred for releases occurring in North America. Zoo contributions varied by taxon, ranging from zoo-bred animals released in 42% of amphibian conservation translocations to zero contributions for marine invertebrates. Proportional involvement of zoos in captive-breeding programs for release has increased from 1974 to 2014 (r = 0.325, p = 0.0313) as has the proportion of translocation-focused scientific papers coauthored by zoo professionals (from 0% in 1974 to 42% in 2013). Although zoos also contribute to conservation translocations through education, funding, and professional expertise, increasing the contribution of animals for release in responsible conservation translocation programs presents a future conservation need and opportunity. We especially encourage increased dialogue and planning between the zoo community, academic institutions, and governments to optimize the direct contribution zoos can make to wildlife conservation through conservation translocations.
Human activity affecting the welfare of wild vertebrates, widely accepted to be sentient, and therefore deserving of moral concern, is widespread. A variety of motives lead to the killing of individual wild animals. These include to provide food, to protect stock and other human interests, and also for sport. The acceptability of such killing is widely believed to vary with the motive and method. Individual vertebrates are also killed by conservationists. Whether securing conservation goals is an adequate reason for such killing has recently been challenged. Conventional conservation practice has tended to prioritise ecological collectives, such as populations and species, when their interests conflict with those of individuals. Supporters of the 'Compassionate Conservation' movement argue both that conservationists have neglected animal welfare when such conflicts arise and that no killing for conservation is justified. We counter that conservationists increasingly seek to adhere to high standards of welfare, and that the extreme position advocated by some supporters of 'Compassionate Conservation', rooted in virtue ethics, would, if widely accepted, lead to considerable negative effects for conservation. Conservation practice cannot afford to neglect consequences. Moreover, the do-no-harm maxim does not always lead to better outcomes for animal welfare.
Conservation translocations, which involve the intentional movement and release of organisms for conservation benefit, are increasingly required to recover species of conservation concern. In order to maximize post-release survival, and to accomplish conservation translocation objectives, animals must exhibit behaviors that facilitate survival in the wild. The Vancouver Island marmot ( Marmota vancouverensis ) is a critically endangered endemic in Canada which has been captive-bred for 24 years for reintroductions and reinforcements that have increased the wild population from ~30 to more than 200 individuals. Despite this success many marmots are killed by predators after release and predation represents a major hurdle to full marmot recovery. To better understand if captive-bred marmots are prepared for the novel environment into which they will be released, and to determine whether such suitability changes over time, we presented taxidermy mounts of mammalian predators and non-predators to marmots that were wild-caught, and captive born for between one and five generations. We also examined mortality of offspring from marmots we tested that had been released to the wild. A minimum of 43% of offspring were killed by predators in the wild over 17 years, most by cougars. Marmots in captivity generally responded to taxidermy mounts by decreasing foraging and increasing vigilance, and overall responded more strongly to predators than non-predators, especially wolves. However, marmots in captivity for more than two generations lacked discrimination between cougars, non-predators, and controls, suggesting a rapid loss of predator recognition. This study was only possible because predator-recognition trials were initiated early in the conservation translocation program, and could then be repeated after a number of generations. The finding that changes occurred relatively rapidly (within five generations during which changes in genetic diversity were negligible) suggests that behavioral suitability may deteriorate more rapidly than genetics would suggest. Strategies addressing potential behavior loss should be considered, including sourcing additional wild individuals or pre-release training of captive-born individuals. Subsequently, post-release survival should be monitored to determine the efficacy of behavior-optimization strategies.
Conservation actions are critical to mitigating the growing number of threatened species worldwide. Previous studies show a consistent increase in one highly targeted type of conservation action: conservation translocation (i.e. the movement of species for conservation purposes). Will this trend continue? To gain insights into effectiveness and future trends, we examined past and proposed uses of conservation translocation in species recovery efforts in Canada, where species are assessed by the Committee on the Status of Endangered Wildlife in Canada and given legal protection and recovery plans under the Species at Risk Act (SARA). Our review of 541 SARA-listed species indicates 55 have already been translocated, 49 are recommended for translocation, and 99 are under consideration, suggesting at least a doubling in future conservation translocations. Overall, translocation was relevant to recovery efforts for 38% of SARA-listed species. Species in need of translocation overwhelmingly belong to the vascular plants, but relatively few plants have been translocated to date, suggesting capacity and expertise in plant propagation and transplantation will be important. Species listed as Endangered under SARA were most commonly translocated, but the effectiveness of translocations relative to other actions could not be assessed due to insufficient detail in Federal recovery documents. Our finding that conservation translocations are projected to increase substantially in Canada begs the question whether such trends will also occur in other countries, and whether alignment between conservation need, policy direction, scientific planning and financial commitments will be sufficient to meet such demand.
Swift foxes (Vulpes velox) are endemic to the Great Plains of North America, but were extirpated from the northern portion of their range by the mid-1900s. Despite several reintroductions to the Northern Great Plains, there remains a ~350 km range gap between the swift fox population along the Montana and Canada border and that in northeastern Wyoming and northwestern South Dakota. A better understanding of what resources swift foxes use along the Montana and Canada border region will assist managers to facilitate connectivity among populations. From 2016 to 2018, we estimated the home range size and evaluated resource use within the home ranges of 22 swift foxes equipped with Global Positioning System tracking collars in northeastern Montana. Swift fox home ranges in our study were some of the largest ever recorded, averaging (± SE) 42.0 km2 ± 4.7. Our results indicate that both environmental and anthropogenic factors influenced resource use. At the population level, resource use increased by 3.3% for every 5.0% increase in percent grasslands. Relative probability of use decreased by 7.9% and 7.4% for every kilometer away from unpaved roads and gas well sites, respectively, and decreased by 3.0% and 11.3% for every one-unit increase in topographic roughness and every 0.05 increase in normalized difference vegetation index (NDVI), respectively. Our study suggests that, to reestablish connectivity among swift fox populations in Montana, managers should aim to maintain large corridors of contiguous grasslands at a landscape scale, a process that likely will require having to work with multiple property owners.