Molecularly targeted agents that are designed to target specific lesions have been proven effective as clinical cancer therapies; however, most currently available therapeutic agents are poorly water-soluble and require oral administration, thereby resulting in low bioavailability and a high risk of side effects due to dose intensification. The rational engineering of systemically injectable medicines that encapsulate such therapeutic payloads may revolutionize anticancer therapies and remains an under-explored area of drug development. Here, the injectable delivery of a nanomedicine complexed with an oral multitargeted kinase inhibitor, vandetanib (vanib), was explored using polymeric nanoparticles (NPs) to achieve the selective accumulation of drug payloads within tumor lesions. To demonstrate this concept, we used biodegradable amphiphilic block copolymer poly(ethylene glycol)-block-poly(D, L-lactic acid) (PEG-PLA) to nanoprecipitate this potent agent to form water-soluble NPs that are suitable for intravenous administration. NP-vanib induced cytotoxic activity by inhibiting the angiogenetic events mediated by VEGFR and EGFR kinases in tested cancer cells and inhibited the growth, tube formation and metastasis of HUVECs. The intravenously injection of NP-vanib into mice bearing HCC BEL-7402 xenografts more effectively inhibited the tumor than the oral administration of vanib. In addition, due to the modular design of these NPs, the drug-loaded particles can easily be decorated with iRGD, a tumor-homing and -penetrating peptide motif, which further improved the in vivo performance of these vanib-loaded NPs. Our results demonstrate that reformulating targeted therapeutic agents in NPs permits their systemic administration and thus significantly improves the potency of currently available, orally delivered agents.
CR6-interacting factor 1 (CRIF1) regulates cell cycle progression and the DNA damage response. Here, we show that CRIF1 expression is decreased in hepatocellular carcinoma (HCC) tissues and positively correlates with patients' survival. In vitro, down-regulation of CRIF1 promotes HCC cell proliferation and invasiveness, while over-expression has the opposite effect. in vivo, CRIF1 knockdown enhances growth of HCC xenografts. Analysis of mRNA microarrays showed that CRIF1 knockdown activates genes involved in TGF-β RI/Smad2/3 signaling, leading to epithelial-mesenchymal transition (EMT) and increased matrix metalloproteinase-3 (MMP3) expression. However, cell invasion and EMT are abrogated in HCC cells treated with SB525334, a specific TGF-β RI inhibitor, which indicates the inhibitory effect of CRIF1 on HCC tumor growth is mediated by TGF-β signaling. These results demonstrate that CRIF1 benefits patient survival by inhibiting HCC cell invasiveness through suppression of TGF-β-mediated EMT and MMP3 expression. This suggests CRIF1 may serve as a novel target for inhibiting HCC metastasis.
Download This Paper Open PDF in Browser Add Paper to My Library Share: Permalink Using these links will ensure access to this page indefinitely Copy URL Copy DOI
Nanostructured WO3 arrays fabricated by tungsten hot-filament chemical vapor deposition in an oxygen/argon gas mixture were studied in order to develop field-emission materials. Nanostructured WO3 arrays of different shapes were grown by controlling the substrate temperature and the distance from the hot filament. We observed that their field-emission properties strongly depended on their tip structure. Numerical calculations of field enhancement factors for different tip geometries were carried out to explain the experimental results. The numerical result reveals that the planar tip structure may help nanostructured WO3 arrays exhibit better field-emission properties.
Nanoparticulate antitumor photodynamic therapy (PDT) has been suffering from the limited dose accumulation in tumor. Herein, we report dually hypoxia- and singlet oxygen-responsive polymeric micelles to efficiently utilize the photosensitizer deposited in the disease site and hence facilely improve PDT's antitumor efficacy. Tailored methoxy poly(ethylene glycol)-azobenzene-poly(aspartic acid) copolymer conjugate with imidazole as the side chains was synthesized. The conjugate micelles (189 ± 19 nm) obtained by self-assembly could efficiently load a model photosensitizer, chlorin e6 (Ce6) with a loading of 4.1 ± 0.5% (w/w). The facilitated cellular uptake of micelles was achieved by the triggered azobenzene collapse that provoked poly(ethylene glycol) shedding; rapid Ce6 release was enabled by imidazole oxidation that induced micelle disassembly. In addition, the singlet oxygen-mediated cargo release not only addressed the limited diffusion range and short half-life of singlet oxygen but also decreased the oxygen level, which could in turn enhance internalization and increase the intracellular Ce6 concentration. The hypoxia-induced dePEGylation and singlet oxygen-triggered Ce6 release was demonstrated both in aqueous buffer and in Lewis lung carcinoma (LLC) cells. The cellular uptake study demonstrated that the dually responsive micelles could deliver significantly more Ce6 to the cells, which resulted in a substantially improved cytotoxicity. This concurred well with the superior in vivo antitumor ability of micelles in a LLC tumor-bearing mouse model. This study presented an intriguing nanoplatform to realize interactively triggered photosensitizer delivery and improved antitumor PDT efficacy.
Protein phosphorylation is one of the important processes of cell signal transduction pathways. To study the effects of 50 Hz electromagnetic field (EMF) on the cell signal transduction process, the phosphorylation of stress-activated protein kinase (SAPK/JNK) extracted from Chinese hamster lung (CHL) cells exposed to 0.4 and 0.8 mT 50 Hz EMF for various durations was measured. A solid-phase kinase assay was used to measure the enzymatic activity of SAPK extracted from cells exposed to 50 Hz EMF at the same magnetic flux density and for only 15 min. The results showed that both 0.4 and 0.8 mT could induce the phosphorylation of SAPK, the phosphorylation of SAPK presented a time-dependent course, and there was a difference between the two intensities. The phosphorylated SAPK enhanced its enzymatic activity. All the data indicated that 50 Hz EMF could activate SAPK in a time- and intensity-dependent manner. The biological effects caused by 50 Hz EMF maybe related to the SAPK signal transduction pathway.
Both reactive oxygen species (ROS) and mitochondria are involved in many physiological and pathological processes. Herein, we employed curved corannulene with a large dipole moment for controlled ROS production and mitochondria targeting. Corannulene was solubilized in water via complexation with gamma-cyclodextrin (1 : 2). The complex could produce type I ROS in water in a dose- and irradiation time-dependent manner. The curvature-induced dipole moment aids electron transfer and hence enables ROS generation. As a consequence of electron delocalization, which facilitates mitochondrial uptake due to the large negative membrane potential of mitochondria, mitochondrial accumulation of corannulene was demonstrated. However, this is not valid for the flat perylene control. This discovery not only presents a new tool for controlled ROS production as well as mitochondria targeting in basic biomedical research, but also opens an avenue for the potential application of curved carbon materials as therapeutic agents.