Ageing is a phenomenon where the accumulation of all the stresses that alter the functions of living organisms, halter them from maintaining their physiological balance and eventually lead to death. The emergence of epigenetic tremendously contributed to the knowledge of ageing. Epigenetic changes in cells or tissues like deoxyribonucleic acid (DNA) methylation, modification of histone proteins, transcriptional modification and also the involvement of non-coding DNA has been documented to be associated with ageing. In order to study ageing, scientists have taken advantage of several potential organisms to aid them in their study. Drosophila melanogaster has been an essential model in establishing current understanding of the mechanism of ageing as they possess several advantages over other competitors like having homologues to more than 75% of human disease genes, having 50% of Drosophila genes are homologues to human genes and most importantly they are genetically amenable. Here, we would like to summarise the extant knowledge about ageing and epigenetic process and the role of Drosophila as an ideal model to study epigenetics in association with ageing process.
Abstract Alzheimer’s disease (AD) is the most common form of neurodegenerative disorder worldwide. Its pathogenesis involves the hallmark aggregation of amyloid-beta (Aβ). Of all the Aβ oligomers formed in the brain, Aβ42 has been found to be the most toxic and aggressive. Despite this, the mechanism behind this disease remains elusive. With the ability to utilize various genetic manipulations, Drosophila melanogaster is ideal in analysing not only cellular characteristics, but also physiological and behavioural traits of human neurodegenerative diseases. Danshen water extract (DWE), obtained from the root of Salvia miltiorrhiza Bunge, was found to have a vast array of beneficial properties. In this study, DWE, and its major components, Salvianolic acid A (SalA) and Salvianolic acid B (SalB) were tested for their abilities to ameliorate Aβ42’s effects. DWE, SalA and SalB were confirmed to be able to reduce fibrillation of Aβ42. As Aβ42 causes neurodegeneration on neurons, DWE, SalA and SalB were tested on Aβ42-treated PC12 neuronal cells and were shown to increase cell viability. DWE and its components were then tested on the Drosophila melanogaster AD model and their rescue effects were further characterized. When human Aβ42 was expressed, the Drosophila exhibited degenerated eye structures known as the rough eye phenotype (REP), reduced lifespan and deteriorated locomotor ability. Administration of DWE, SalA and SalB partially reverted the REP, increased the age of AD Drosophila and improved most of the mobility of AD Drosophila . In conclusion, DWE and its components may have therapeutic potential for AD patients and possibly other forms of brain diseases.
The search for biodegradable plastics has become the focus in combating the global plastic pollution crisis. Polyhydroxyalkanoates (PHAs) are renewable substitutes to petroleum-based plastics with the ability to completely mineralize in soil, compost, and marine environments. The preferred choice of PHA synthesis is from bacteria or archaea. However, microbial production of PHAs faces a major drawback due to high production costs attributed to the high price of organic substrates as compared to synthetic plastics. As such, microalgal biomass presents a low-cost solution as feedstock for PHA synthesis. Photoautotrophic microalgae are ubiquitous in our ecosystem and thrive from utilizing easily accessible light, carbon dioxide and inorganic nutrients. Biomass production from microalgae offers advantages that include high yields, effective carbon dioxide capture, efficient treatment of effluents and the usage of infertile land. Nevertheless, the success of large-scale PHA synthesis using microalgal biomass faces constraints that encompass the entire flow of the microalgal biomass production, i.e., from molecular aspects of the microalgae to cultivation conditions to harvesting and drying microalgal biomass along with the conversion of the biomass into PHA. This review discusses approaches such as optimization of growth conditions, improvement of the microalgal biomass manufacturing technologies as well as the genetic engineering of both microalgae and PHA-producing bacteria with the purpose of refining PHA production from microalgal biomass.
Alzheimer's disease (AD) is the most prevalent type of dementia globally. The accumulation of amyloid-beta (Aβ) extracellular senile plaques in the brain is one of the hallmark mechanisms found in AD. Aβ42 is the most damaging and aggressively aggregating Aβ isomer produced in the brain. Although Aβ42 has been extensively researched as a crucial peptide connected to the development of the characteristic amyloid fibrils in AD, the specifics of its pathophysiology are still unknown. Therefore, the main objective was to identify novel compounds that could potentially mitigate the negative effects of Aβ42. 3-[[(3S)-1,2,3,4-Tetrahydroisoquinoline-3-carbonyl]amino]propanoic acid (THICAPA) was identified as a ligand for Aβ42 and for reducing fibrillary Aβ42 aggregation. THICAPA also improved cell viability when administered to PC12 neuronal cells that were exposed to Aβ42. Additionally, this compound diminished Aβ42 toxicity in the current AD Drosophila model by rescuing the rough eye phenotype, prolonging the life span, and enhancing motor functions. Through next-generation RNA-sequencing, immune response pathways were downregulated in response to THICAPA treatment. Thus, this study suggests THICAPA as a possible disease-modifying treatment for AD.
Alzheimer's disease (AD) is the most widespread neurodegenerative disorder worldwide.Its pathogenesis involves two hallmarks: aggregation of amyloid beta (Aβ) and occurrence of neurofibrillary tangles (NFTs).The mechanism behind the disease is still unknown.This has prompted the use of animal models to mirror the disease.The fruit fly, Drosophila melanogaster has garnered considerable attention as an organism to recapitulate human disorders.With the ability to monopolise a multitude of traditional and novel genetic tools, Drosophila is ideal for studying not only cellular aspects but also physiological and behavioural traits of human neurodegenerative diseases.Here, we discuss the use of the Drosophila model in understanding AD pathology and the insights gained in discovering drug therapies for AD.
Alzheimer's disease (AD) is the most pervasive neurodegenerative disorder in societies globally. Till now, the mechanism behind this disease is still equivocal. Amyloid-beta42 protein (Aβ42), the most toxic and aggressive Aβ species, is the main focus of this study. The naturally occurring ethyl caffeate (EC) is associated with various medicinal properties. Here, EC was tested for its protective properties against Aβ42's toxic effects.As treatment of Aβ42 has been shown to cause neuronal cell death, EC was first screened with Aβ42-incubated PC12 neuronal cells. Next, the compound was tested on the Drosophila melanogaster AD model using the rough eye phenotype assay, lifespan assay and negative geotaxis assay.EC ameliorated PC12 cells from cell death linked to Aβ42 exposure. Using Drosophila expressing human Aβ42, feeding of EC was able to partially rescue the rough eye phenotype, lengthen the lifespan of AD Drosophila and enhanced the mobility of middle-aged AD Drosophila.Overall, the results of this study showed that EC might possess therapeutic properties for AD. Geriatr Gerontol Int 2021; 21: 1125-1130.
Abstract The steady decline of physiological function and increased vulnerability to age-related disorders are two features of the complicated biological process of ageing. As a key organ for nutrient absorption, metabolism, and immunological regulation, the gut plays a major part in the ageing process. Drosophila melanogaster , a well-established model organism, has emerged as a significant tool for exploring the intricate rapport between the gut and ageing. Through the use of Drosophila models, the physiological and molecular elements of the gut-brain axis have been thoroughly explored. These models have also provided insights into the mechanisms by which gut health impacts ageing and age-related illnesses. Drosophila ’s gut microbiota experience dysbiosis with age which has been linked to age-related diseases. To prevent this and promote healthy ageing in Drosophila , gut microbiota modification methods, such as dietary restriction in tandem with time-restricted feeding, administration of pro-, pre- and synbiotics, as well as pharmaceutical interventions have been generated with positive impacts. The article also covers the drawbacks and difficulties of investigating the gut via the Drosophila . Thus, with an emphasis on the lessons discovered from Drosophila research, this review provides an extensive description of the current studies on the role of the gut-brain axis in ageing and health.
Alzheimer's disease (AD) is a progressive disease and one of the most common forms of neurodegenerative disorders. Emerging evidence is supporting the use of various strategies that modulate gut microbiota to exert neurological and psychological changes. This includes the utilisation of probiotics as a natural and dietary intervention for brain health. Here, we showed the potential AD-reversal effects of Lactobacillus probiotics through feeding to our Drosophila melanogaster AD model. The administration of Lactobacillus strains was able to rescue the rough eye phenotype (REP) seen in AD-induced Drosophila, with a more prominent effect observed upon the administration of Lactobacillus plantarum DR7 (DR7). Furthermore, we analysed the gut microbiota of the AD-induced Drosophila and found elevated levels of Wolbachia. The administration of DR7 restored the gut microbiota diversity of AD-induced Drosophila with a significant reduction in Wolbachia's relative abundance, accompanied by an increase of Stenotrophomonas and Acetobacter. Through functional predictive analyses, Wolbachia was predicted to be positively correlated with neurodegenerative disorders, such as Parkinson's, Huntington's and Alzheimer's diseases, while Stenotrophomonas was negatively correlated with these neurodegenerative disorders. Altogether, our data exhibited DR7's ability to ameliorate the AD effects in our AD-induced Drosophila. Thus, we propose that Wolbachia be used as a potential biomarker for AD.