Rare gas halide lasers at 193 and 248/nm will require lower-loss optics if mirrors ad windows are not to be limiting factors in advanced DOE applications in laser fusion and photochemistry. This project addresses this problem in a number of ways, including materials investigations, test coatings, and fabrication of new uv laser coating designs, as described in more detail in the previous quarterly reports. Described in the final report are the process of making uv laser mirrors and the experimental strategy for attempting to improve them. Materials research is essential, and included selection and deposition of several condidate materials and an approximate ranking of their optical properties, so that new material combinations could be chosen, computer simulated, and deposited using improved vacuum techniques. Analysis of the electric fields within a laser mirror were employed to lower coating loss. A summary of test data is included, along with remarks on the survivability of uv laser optics, and possible future areas of inquiry, if truly low-loss uv laser mirrors are to ever be developed.
The development of practical fusion energy plants based on inertial confinement with ultraviolet laser beams requires durable, stable final optics that will withstand the harsh fusion environment. Aluminum-coated reflective surfaces are fragile, and require hard overcoatings resistant to contamination, with low optical losses at 248.4 nanometers for use with high-power KrF excimer lasers. This program addresses the definition of requirements for IFE optics protective coatings, the conceptual design of the required deposition equipment according to accepted contamination control principles, and the deposition and evaluation of diamondlike carbon (DLC) test coatings. DLC coatings deposited by Plasma Immersion Ion Processing were adherent and abrasion-resistant, but their UV optical losses must be further reduced to allow their use as protective coatings for IFE final optics. Deposition equipment for coating high-performance IFE final optics must be designed, constructed, and operated with contamination control as a high priority.