The genotoxicity, mutagenesis, and carcinogenic effects of polycyclic aromatic hydrocarbon (PAH) derivatives may exceed the parent PAHs. However, their influence on the soil environment has not been explored to a large extent. Oxygenated polycyclic aromatic hydrocarbons (OPAHs) and nitrated polycyclic aromatic hydrocarbons (NPAHs) are typical polar substituted compounds. We offer a review of the literature on the sources, quantification, incidence, toxicity, and transport of these compounds in soil. Although their environmental concentrations are lower than those of their parent compounds, they exert higher toxicity. Both types of substances are basically related to carcinogenesis. OPAHs are not enzymatically activated and can generate reactive oxygen species in biological cells, while NPAHs have been shown to be mutagenic, genotoxic, and cytotoxic. These compounds are largely derived from the transformation of PAHs, but they behave differently in soil because of their higher molecular weight and dissimilar adsorption mechanisms. Therefore, specialized knowledge of model derivatives is required. We also made recommendations for future directions based on existing research. It is expected that the review will trigger scientific discussions and provide a research basis for further study on PAH derivatives in the soil environment.
With the ongoing development and utilization of nuclear energy, uranium pollution has become an increasingly serious issue. Although many adsorbents are able to remove hexavalent uranium (U(VI)) from aqueous solution, the development of a high capacity adsorbent exhibiting superior stability would be beneficial. Grafting poly(amidoxime) (PAO) onto reduced graphene oxide (rGO) provides suitable U(VI) adsorption performance but the PAO is prone to agglomeration. The present work used density functional theory calculations to predict that PAO would bond with pyrrolic N atoms in nitrogen-doped rGO (N-rGO). To confirm this, PAO-grafted rGO (PAO-rGO) and PAO-grafted N-rGO (PAO-N-rGO) were prepared and characterized and the successful grafting of PAO on N-rGO was demonstrated. Adsorption experiments demonstrated that PAO-N-rGO exhibit superb U(VI) adsorption performance compared with the original PAO-rGO under acidic conditions. As for competing metal ions, Cu2+, Al3+, and Ca2+ have a greater impact on U(VI) adsorption than Na+, Mg2+, and K+ both for PAO-rGO and PAO-N-rGO. The maximum adsorption capacities of PAO-rGO and PAO-N-rGO for U(VI) were calculated to be 1500.26 and 1545.95 mg g-1, respectively. The mechanism of nitrogen doping promoting uranium(VI) adsorption can be attributed to enhanced PAO grafting and improvement of adsorption performance of the rGO. This work demonstrates that nitrogen doping is a viable strategy for enhancing the U(VI) adsorption performance of PAO-rGO.
Three types of subsurface wastewater infiltration systems (SWIS) were developed to study the efficiency of organic pollutant removal from distributed rural sewage under various conditions. Of the three different layered substrate systems, the one with the greatest amount of decomposed cow dung (5%) and soil (DCDS) showed the highest removal efficiency with respect to total nitrogen (TN), where the others showed no significant difference. The TN removal efficiency was increased with an increasing filling height of DCDS. Compared with the TN removal efficiency of 25% in the system without DCDS, the removal efficiency of the systems in which DCDS filled half and one fourth of the height was increased by 72% and 31%, respectively. Based on seasonal variations in the discharge of the typical rural family, the SWIS were run at three different hydraulic loads of 6.5, 13 and 20 cm/d. These results illustrated that SWIS could perform well at any of the given hydraulic loads. The results of trials using different inlet configurations showed that the effluent concentration of the contaminants in the system operating a multiple-inlet mode was much lower compared with the system operated under single-inlet conditions. The effluent concentration of a pilot-scale plant achieved the level III criteria specified by the Surface Water Quality Standard at the initial stage.
Herein, biochars derived from corn stalks, rice husks, and bamboo powder were modified by nitric acid oxidation and sodium hydroxide alkali activation to identify efficient and cost-effective polycyclic aromatic hydrocarbon-adsorbent and microbial-immobilized carriers. The surface characterization and adsorption investigation results suggested that acid/alkali modification promoted the phenanthrene removal ability in an aqueous solution of biochars via facilitating π–π/n–π electron donor–acceptor interactions, electrostatic interactions, hydrogen bonds, and hydrophobic interactions. Subsequently, the degrading bacteria Rhodococcus sp. DG1 was successfully immobilized on the rice husk-derived biochar with nitric acid oxidation (RBO), which exhibited the maximum phenanthrene adsorption efficiency (3818.99 µg·g−1), abundant surface functional groups, and a larger specific surface area (182.6 m2·g−1) and pore volume (0.141 m3·g−1). Degradation studies revealed that the microorganisms immobilized on RBO by the adsorption method yielded a significant phenanthrene removal rate of 80.15% after 30 days, which was 38.78% higher than that of the control. Conversely, the polymer gel network-based microenvironment in the microorganism-immobilized RBO by the combined adsorption–embedding method restricted the migration and diffusion of nutrients and pollutants in the reaction system. This study thus introduces an innovative modified biochar-based microbial immobilization technology characterized by a simple design, convenient operation, and high adsorption efficiency, offering valuable insights into material selection for PAH contamination bioremediation.
This study investigated the polycyclic aromatic hydrocarbon (PAH) pollution in the reconstructed land of an abandoned industrial site: a coking plant in Beijing. To meet the needs of urban development, many factories have had to be relocated from city centers, and abandoned industrial sites often need to be transformed into residential land or urban green space through a series of restoration measures. It is necessary to study the level of residual pollutants and potential risks associated with industrial reconstructed land. The concentration of 16 PAHs in the study area ranged from 314.7 to 1618.3 µg/kg, and the average concentration was still at a medium pollution level; the concentration of PAHs in the original coking workshop had the highest levels (1350.5 µg/kg). The PAHs in the soil were mainly low-ring aromatics, especially naphthalene and phenanthrene. The isomer method and principal component analysis indicated that PAHs in the topsoil were the result of coal and biomass combustion. The seven carcinogenic PAHs were the main contributors to the total toxicity equivalence. The genetic toxicity of benzo[a]pyrene was relatively low, and the results were related to the concentration level. There were potential carcinogenic risks for people of varying ages in this residential area. In total, gender differences were small, and the comprehensive lifetime cancer risk level was still acceptable. For the remaining plots at the study site, the daily intake of PAHs by construction workers was between 0.74⁻2.31 ng/kg bw/day, which requires further evaluation about ignored area occupational exposure to environmental pollutants.