ABSTRACT Genetic research on nicotine dependence has utilized multiple assessments that are in weak agreement. We conducted a genome-wide association study of nicotine dependence defined using the Diagnostic and Statistical Manual of Mental Disorders (DSM-NicDep) in 61,861 individuals (47,884 of European ancestry, 10,231 of African ancestry, 3,746 of East Asian ancestry) and compared the results to other nicotine-related phenotypes. We replicated the well-known association at the CHRNA5 locus (lead SNP: rs147144681, p =1.27E-11 in European ancestry; lead SNP = rs2036527, p = 6.49e-13 in cross-ancestry analysis). DSM-NicDep showed strong positive genetic correlations with cannabis use disorder, opioid use disorder, problematic alcohol use, lung cancer, material deprivation, and several psychiatric disorders, and negative correlations with respiratory function and educational attainment. A polygenic score of DSM-NicDep predicted DSM-5 tobacco use disorder and 6 of 11 individual diagnostic criteria, but none of the Fagerström Test for Nicotine Dependence (FTND) items, in the independent NESARC-III sample. In genomic structural equation models, DSM-NicDep loaded more strongly on a previously identified factor of general addiction liability than did a “problematic tobacco use” factor (a combination of cigarettes per day and nicotine dependence defined by the FTND). Finally, DSM-NicDep was strongly genetically correlated with a GWAS of tobacco use disorder as defined in electronic health records, suggesting that combining the wide availability of diagnostic EHR data with nuanced criterion-level analyses of DSM tobacco use disorder may produce new insights into the genetics of this disorder.
Family history (FH) is an important risk factor for the development of alcohol use disorder (AUD). A variety of dichotomous and density measures of FH have been used to predict alcohol outcomes; yet, a systematic comparison of these FH measures is lacking. We compared 4 density and 4 commonly used dichotomous FH measures and examined variations by gender and race/ethnicity in their associations with age of onset of regular drinking, parietal P3 amplitude to visual target, and likelihood of developing AUD.
Identification of causal variants and genes underlying genome-wide association study (GWAS) loci is essential to understand the biology of alcohol use disorder (AUD) and drinks per week (DPW). Multi-omics integration approaches have shown potential for fine mapping complex loci to obtain biological insights to disease mechanisms. In this study, we use multi-omics approaches, to fine-map AUD and DPW associations at single SNP resolution to demonstrate that rs56030824 on chromosome 11 significantly reduces SPI1 mRNA expression in myeloid cells and lowers risk for AUD and DPW. Our analysis also identifies MAPT as a candidate causal gene specifically associated with DPW. Genes prioritized in this study show overlap with causal genes associated with neurodegenerative disorders. Multi-omics integration analyses highlight, genetic similarities and differences between alcohol intake and disordered drinking, suggesting molecular heterogeneity that might inform future targeted functional and cross-species studies.
Longitudinal analyses allow us to understand how genetic risk unfolds across development, in a way that is not possible with cross-sectional analyses of individuals at different ages. This has received little attention in genetic association analyses. In this study, we test for genetic effects of GABRA2, a gene previously associated with alcohol dependence, on trajectories of drunkenness from age 14 to 25. We use data from 1070 individuals who participated in the prospective sample of the Collaborative Study on the Genetics of Alcoholism, in order to better understand the unfolding of genetic risk across development. Piecewise linear growth models were fit to model the influence of genotype on rate of increase in drunkenness from early adolescence to young adulthood (14–18 years), the change in drunkenness during the transition to adulthood (18–19 years) and the rate of change in drunkenness across young adulthood (≥ 19 years). Variation in GABRA2 was associated with an increase in drunkenness that occurred at the transition between adolescence and adulthood. The genotypic effect was more pronounced in females. These analyses illustrate the importance of longitudinal data to characterize how genetic effects unfold across development. The findings suggest that transitions across important developmental periods may alter the relative importance of genetic effects on patterns of alcohol use. The findings also suggest the importance of considering gender when evaluating genetic effects on drinking patterns in males and females.
There is controversy in the literature regarding the relationship between event-related-potential (ERP) abnormalities in abstinent alcoholics and stimulus-processing modality (i.e., visual versus auditory). The first purpose of this study was to address questions about whether ERP abnormalities observed in alcoholics are modality specific. The second purpose was to employ current source density (CSD) analyses to investigate topographic differences between alcoholics and controls within each modality.Data were collected from 30 sober male alcoholics and 39 normal males in a typical auditory oddball task and in a visual oddball paradigm with novel stimuli, with an extensive set of 61 scalp electrodes. Visual and quantitative assessment of CSD maps as well as analyses of variances on both raw and normalized ERP data were performed.Positive findings were limited to the N1 and P3 components. The visual N1 amplitude was significantly smaller in alcoholics than in controls at the parietal region; no significant group differences in N1 were found in the auditory modality. Alcoholics had widespread reductions in P3 amplitudes in both modalities compared with controls, although in the frontal region this effect was partially due to the influence of age. These P3 reductions in alcoholics were statistically more pronounced in the posterior compared with the anterior regions regardless of modality. Topographically, sources in CSD maps were weaker in alcoholics than in controls; in the frontal and central regions, the weakness was more pronounced in the auditory modality but, in parietal and occipital regions, it was more pronounced in the visual modality.The results suggest that, in abstinent alcoholics, abnormalities in auditory ERPs may be localized to more anterior sources, while abnormalities in visual ERPs may be localized to more posterior sources. ERP topographic features are more sensitive than amplitude measurements in assessing alcoholic-related modality effects.
Objective: The gene GRM8, a metabotropic glutamate receptor, has emerged as a gene of interest for its possible role in the development of alcohol dependence, with evidence of association with an electrophysiological endophenotype and level of response to alcohol as well as suggestive evidence of association with alcohol dependence. Method: The present study further investigated the association between GRM8 and alcohol dependence symptom counts among young adults using a new sample of individuals collected as part of the prospective sample (ages 18–26 years; N = 842) from the Collaborative Study on the Genetics of Alcoholism (COGA). Results: Two single-nucleotide polymorphisms were significantly associated with alcohol dependence in European Americans using the Nyholt corrected p value of .007: rs886003 (β = -.212, p = .0002) and rs17862325 (β = -.234, p < .0001), but not in African Americans, likely because of the lower power to detect association in this group. Conclusions: These results further implicate the role of glutamate receptor genes such as GRM8 in the development of alcohol dependence.
Abstract Research has identified clinical, genomic, and neurophysiological markers associated with suicide attempts (SA) among individuals with psychiatric illness. However, there is limited research among those with an alcohol use disorder (AUD), despite their disproportionately higher rates of SA. We examined lifetime SA in 4,068 individuals with DSM-IV alcohol dependence from the Collaborative Study on the Genetics of Alcoholism (23% lifetime suicide attempt; 53% female; 17% Admixed African American ancestries; mean age: 38). We 1) conducted a genome-wide association study (GWAS) of SA and performed downstream analyses to determine whether we could identify specific biological pathways of risk, and 2) explored risk in aggregate across other clinical conditions, polygenic scores (PGS) for comorbid psychiatric problems, and neurocognitive functioning between those with AD who have and have not reported a lifetime suicide attempt. The GWAS and downstream analyses did not produce any significant associations. Participants with an AUD who had attempted suicide had greater rates of trauma exposure, major depressive disorder, post-traumatic stress disorder, and other substance use disorders compared to those who had not attempted suicide. Polygenic scores for suicide attempt, depression, and PTSD were associated with reporting a suicide attempt (ORs = 1.22–1.44). Participants who reported a SA also had decreased right hemispheric frontal-parietal theta and decreased interhemispheric temporal-parietal alpha electroencephalogram resting-state coherences relative to those who did not, but differences were small. Overall, individuals with alcohol dependence who report SA appear to experience a variety of severe comorbidities and elevated polygenic risk for SA. Our results demonstrate the need to further investigate suicide attempts in the presence of substance use disorders.
Differences in the connectivity of large-scale functional brain networks among individuals with alcohol use disorders (AUD), as well as those at risk for AUD, point to dysfunctional neural communication and related cognitive impairments. In this study, we examined how polygenic risk scores (PRS), derived from a recent GWAS of DSM-IV Alcohol Dependence (AD) conducted by the Psychiatric Genomics Consortium, relate to longitudinal measures of interhemispheric and intrahemispheric EEG connectivity (alpha, theta, and beta frequencies) in adolescent and young adult offspring from the Collaborative Study on the Genetics of Alcoholism (COGA) assessed between ages 12 and 31. Our findings indicate that AD PRS (p-threshold < 0.001) was associated with increased fronto-central, tempo-parietal, centro-parietal, and parietal-occipital interhemispheric theta and alpha connectivity in males only from ages 18–31 (beta coefficients ranged from 0.02–0.06, p-values ranged from 10−6–10−12), but not in females. Individuals with higher AD PRS also demonstrated more performance deficits on neuropsychological tasks (Tower of London task, visual span test) as well as increased risk for lifetime DSM-5 alcohol and opioid use disorders. We conclude that measures of neural connectivity, together with neurocognitive performance and substance use behavior, can be used to further understanding of how genetic risk variants from large GWAS of AUD may influence brain function. In addition, these data indicate the importance of examining sex and developmental effects, which otherwise may be masked. Understanding of neural mechanisms linking genetic variants emerging from GWAS to risk for AUD throughout development may help to identify specific points when neurocognitive prevention and intervention efforts may be most effective.