Muscle force during concentric contractions is potentiated by a preceding eccentric contraction: a phenomenon known as the stretch-shortening cycle (SSC) effect. Tendon elongation is often considered to be the primary factor for this force potentiation. However, direct examination of the influence of tendon elongation on the SSC effect has not been made. The aim of this study was to evaluate the contribution of tendon elongation to the SSC effect by comparing the magnitude of the SSC effect in the rat soleus with and without the Achilles tendon. The rat soleus was subjected to concentric contractions without pre-activation (CON) and concentric contractions with an eccentric pre-activation (ECC). For the 'with-tendon' condition, the calcaneus was rigidly fixed to a force transducer, while for the 'without-tendon' condition, the soleus was fixed at the muscle-tendon junction. The SSC effect was calculated as the ratio of the mechanical work done during the concentric phase for the ECC and the CON conditions. Substantial and similar (P=0.167) SSC effects were identified for the with-tendon (318±86%) and the without-tendon conditions (271±70%). The contribution of tendon elongation to the SSC effect was negligible for the rat soleus. Other factors, such as pre-activation and residual force enhancement, may cause the large SSC effects and need to be evaluated.
Abstract Muscle fiber force production is determined by the excitation frequency of motor nerves, which induce transient increases in cytoplasmic free Ca 2+ concentration ([Ca 2+ ] i ) and the force-generating capacity of the actomyosin cross-bridges. Previous studies suggest that, in addition to altered cross-bridge properties, force changes during dynamic (concentric or eccentric) contraction might be affected by Ca 2+ -dependent components. Here we investigated this by measuring [Ca 2+ ] i and force in mouse muscle fibers undergoing isometric, concentric, and eccentric contractions. Intact single muscle fibers were dissected from the flexor digitorum brevis muscle of mice. Fibers were electrically activated isometrically at 30–100 Hz and after reaching the isometric force plateau, they were actively shortened or stretched. We calculated the ratio (relative changes) in force and [Ca 2+ ] i attained in submaximal (30 Hz) and near-maximal (100 Hz) contractions under isometric or dynamic conditions. Tetanic [Ca 2+ ] i was similar during isometric, concentric and eccentric phases of contraction at given stimulation frequencies while the forces were clearly different depending on the contraction types. The 30/100 Hz force ratio was significantly lower in the concentric (44.1 ± 20.3%) than in the isometric (50.3 ± 20.4%) condition ( p = 0.005), whereas this ratio did not differ between eccentric and isometric conditions ( p = 0.186). We conclude that the larger force decrease by decreasing the stimulation frequency during concentric than during isometric contraction is caused by decreased myofibrillar Ca 2+ sensitivity, not by the decreased [Ca 2+ ] i .
Muscle metabolism during and after low-load blood flow restriction (BFR) exercise should be further investigated to clarify the mechanism by which the exercise leads to muscle hypertrophy, and increases strength and endurance. We aimed to investigate the effects of low-load resistance exercise with BFR on intramuscular hemodynamics, oxygenation level, and water content.Seven men performed ankle plantar flexion exercise (120 repetitions, 30% one repetition maximum) using a custom-made device with and without BFR inside a magnetic resonance scanner. Changes in the total hemoglobin/myoglobin concentration and Tissue Oxygenation Index (TOI) within the medial gastrocnemius were evaluated before, during, and after exercise using near-infrared spectroscopy. Intramuscular water content was evaluated before and after exercise by calculating an apparent diffusion coefficient (ADC) using magnetic resonance diffusion-weighted imaging.The TOI significantly decreased during BFR and non-restricted exercises, and significantly increased after BFR exercise; compared to the non-restricted condition, the BFR condition showed significantly greater changes in the TOI during and after exercise. The total hemoglobin/myoglobin concentration significantly increased during and after exercise in both exercise conditions; the BFR condition temporarily showed significantly greater values during and after exercise. Although the ADC values significantly elevated after BFR and non-restricted exercises, the elevation was significantly greater in the BFR condition.Compared to non-restricted exercise, low-load BFR exercise exposes an exercising muscle to greater hypoxic and hyperemic environments. Moreover, BFR exercise not only elevates muscle oxygenation level, but also results in greater muscle swelling and reactive hyperemia than those observed after non-restricted exercise.
ABSTRACT The torque attained during active shortening is enhanced after an active stretch (stretch-shortening cycle, SSC). This study examined the influence of pre-activation on fascicle behavior and the SSC effect. Subjects exhibited the following three conditions by electrically induced plantar flexions. In the isometric-concentric (ISO-CON) condition, subjects exhibited active shortening from dorsiflexion of 15° to 0° after isometric pre-activation. In the eccentric-concentric (ECC-CON) condition, subjects exhibited the above active shortening immediately after the eccentric pre-activation. In the isometric-eccentric-concentric (ISO-ECC-CON) condition, isometric pre-activation was conducted before exhibiting the ECC-CON maneuver. Joint torque and fascicle length of the medial gastrocnemius were compared. The joint torque at the onset and end of shortening was larger in the ISO-ECC-CON than in the ISO-CON or ECC-CON conditions, while no differences were found between ISO-CON and ECC-CON conditions. The magnitude of fascicle elongation attained during the active stretch was larger in the ISO-ECC-CON than in the ECC-CON condition. This could be caused by the shorter fascicle length at the onset of active stretch due to isometric pre-activation. This shorter fascicle length could lead to larger fascicle elongation during the subsequent active stretch, which should emphasize the effect of active stretch-induced force enhancement mechanism.
Muscle force is enhanced during shortening when shortening is preceded by an active stretch. This phenomenon is known as the stretch-shortening cycle (SSC) effect. For some stretch-shortening conditions this increase in force during shortening is maintained following SSCs when compared to the force following a pure shortening contraction. It has been suggested that the residual force enhancement property of muscles, which comes into play during the stretch phase of SSCs may contribute to the force increase after SSCs. Knowing that residual force enhancement is associated with a substantial reduction in metabolic energy per unit of force, it seems reasonable to assume that the metabolic energy cost per unit of force is also reduced following a SSC. The purpose of this study was to determine the energy cost per unit of force at steady-state following SSCs and compare it to the corresponding energy cost following pure shortening contractions of identical speed and magnitude. We hypothesized that the energy cost per unit of muscle force is reduced following SSCs compared to the pure shortening contractions. For the SSC tests, rabbit psoas fibers ( n = 12) were set at an average sarcomere length (SL) of 2.4 μm, activated, actively stretched to a SL of 3.2 μm, and shortened to a SL of 2.6 or 3.0 μm. For the pure shortening contractions, the same fibers were activated at a SL of 3.2 μm and actively shortened to a SL of 2.6 or 3.0 μm. The amount of ATP consumed was measured over a 40 s steady-state total isometric force following either the SSCs or the pure active shortening contractions. Fiber stiffness was determined in an additional set of 12 fibers, at steady-state for both experimental conditions. Total force, ATP consumption, and stiffness were greater following SSCs compared to the pure shortening contractions, but ATP consumption per unit of force was the same between conditions. These results suggest that the increase in total force observed following SSCs was achieved with an increase in the proportion of attached cross-bridges and titin stiffness. We conclude that muscle efficiency is not enhanced at steady-state following SSCs.
Recent studies have reported that resistance training increases the cross-sectional areas (CSAs) of tendons; however, this finding has not been consistently observed across different studies. If tendon CSA increases through resistance training, resistance-trained individuals should have larger tendon CSAs as compared with untrained individuals. Therefore, in the current study, we aimed to investigate whether resistance training increases tendon CSAs by comparing resistance-trained and untrained individuals. Sixteen males, who were either body builders or rugby players, were recruited as the training group, and 11 males, who did not participate in regular resistance training, were recruited into the control group. Tendon CSAs and muscle volumes of the triceps brachii, quadriceps femoris, and triceps surae were calculated from images obtained by using magnetic resonance imaging. The volumes of the 3 muscles were significantly higher in the training group than in the control group (P < .001 for all muscles). However, a significant difference in tendon CSAs was found only for the distal portion of the triceps surae tendon (P = .041). These findings indicate that tendon CSA is not associated with muscle volume, suggesting that resistance training does not increase tendon CSA.
Our purpose was to use small-angle X-ray diffraction to investigate the structural changes within sarcomeres at steady-state isometric contraction following active lengthening and shortening, compared to purely isometric contractions performed at the same final lengths. We examined force, stiffness, and the 1,0 and 1,1 equatorial and M3 and M6 meridional reflections in skinned rabbit psoas bundles, at steady-state isometric contraction following active lengthening to a sarcomere length of 3.0 µm (15.4% initial bundle length at 7.7% bundle length/s), and active shortening to a sarcomere length of 2.6 µm (15.4% bundle length at 7.7% bundle length/s), and during purely isometric reference contractions at the corresponding sarcomere lengths. Compared to the reference contraction, the isometric contraction after active lengthening was associated with an increase in force (i.e., residual force enhancement) and M3 spacing, no change in stiffness and the intensity ratio I1,1/I1,0, and decreased lattice spacing and M3 intensity. Compared to the reference contraction, the isometric contraction after active shortening resulted in decreased force, stiffness, I1,1/I1,0, M3 and M6 spacings, and M3 intensity. This suggests that residual force enhancement is achieved without an increase in the proportion of attached cross-bridges, and that force depression is accompanied by a decrease in the proportion of attached cross-bridges. Furthermore, the steady-state isometric contraction following active lengthening and shortening is accompanied by an increase in cross-bridge dispersion and/or a change in the cross-bridge conformation compared to the reference contractions.