Abstract In this study, an experimental investigation is conducted on mechanical characteristics of poly(lactic acid) (PLA), before, and during degradation for stent application. A bioreactor is designed and fabricated to mimic in‐vivo environment of the body for studying degradation behavior of PLA fibers manufactured by melt spinning method. Beside PLA fibers, the degradation of PLA braided stents is investigated as control samples. To measure stress–strain and stress relaxation properties of PLA fibers, tensile, and relaxation tests are conducted. The decreasing trend of Young's modulus, variations in residual stress value after relaxation and pattern of stress relaxation are found during degradation. The influence of effective parameters, that is, temperature and stress, on PLA degradation is also studied. Moreover, the PLA degradation is analyzed by gel permeation chromatography (GPC), differential scanning calorimetry (DSC), Thermogravimetric analysis (TGA) and microscopic images. GPC results indicate the molecular weight decreases from 196,000 to 80,000 due to degradation while DSC analysis confirmed that the degradation promote an increase in PLA degree of crystallinity (from 43.3% to 59.8%). In addition, TGA results show that the PLA thermal stability decreases during degradation. This study provides useful information on PLA properties during degradation to assess the material in context of degradable stents.
In this paper, a thermodynamically consistent formulation and numerical implementation of a gradient-enhanced anisotropic microplane damage model are proposed. The microplane model is derived based on the volumetric–deviatoric split and the kinematic constraint assumption. The mixed finite element formulation of displacement and nonlocal strains field is developed to simulate anisotropic quasi-brittle fracture. The proposed model is used to describe the mechanical behavior of anisotropic quasi-brittle materials by numerical simulations of uniaxial tension, simple shear, tension of a bar with localized deformation, and a rectangular specimen with a material imperfection. The results show the ability of the proposed approach to predict mesh-independent results for quasi-brittle damage behavior accompanied by the localization of deformation. Comparison between numerical and experimental results shows that the relatively simple model based on microplane theory together with the standard finite elements implementation is capable to realistically simulate complex behaviors related to fracture of quasi-brittle material such as concrete.
Abstract This study aims to investigate the energy absorption of seam areas in sportswear. Weft knitted fabrics with two structures of plain and rib were fabricated by polyester/Lycra and viscose/ Lycra yarns. Fabrics were stitched in two stitch classes. Moreover, two types of seams were considered. A pull-out test was carried out on all samples to determine the energy absorption values. Furthermore, a finite element model was applied to predict the energy absorption of each structure. The unit cell of each sample was created in ABAQUS software and the tensile load was applied to the stitch yarn. The unit cells of the fabric and the stitched section were modeled in the meso-scale and then elastic and viscoelastic properties of the yarns were assigned to the model. The energy absorption of the sample with rib pattern, lapped seam, and 607 stitch class was more than other samples. Also, the numerical and experimental results showed a high correlation with each other in samples with 304 stitch class and flat seam type.
A constitutive model is proposed for simulations of hot forming processes. Dominant mechanisms in hot forming including inter-granular deformation, grain boundary sliding and grain boundary diffusion are considered in the constitutive model. A Taylor type polycrystalline model is used to predict inter-granular deformation. Previous works on grain boundary sliding and grain boundary diffusion are extended to drive three dimensional macro stress-strain rate relationships for each mechanism. In these relationships, the effect of grain size is also taken into account. It is shown that for grain boundary diffusion, stress-strain rate relationship obeys the Prandtl-Reuss flow rule. The proposed model is used to simulate step strain rate tests and the results are compared with experimental data. It is concluded that the model can be used to predict flow stress for various grain sizes and strain rates. The proposed model can be directly used in simulation of hot forming processes and as an example the bulge forming process is simulated and the results are compared with experimental data.
The main objective of this study is the numerical implementation of an advanced elastic–plastic model fully coupled with anisotropic ductile damage. The implemented formulation has been defined in the framework of thermodynamics of irreversible processes and a symmetric second-order tensor is adopted to describe the anisotropic damage state variable. After a summary of the main constitutive equations is given, the numerical integration of constitutive equations is performed using implicit and asymptotic integration schemes. Finite element simulation is performed using ABAQUS/Explicit software and the developed VUMAT subroutine. Next, the application of the developed model to T-shaped hydroforming of tubes and square-cup deep drawing metal forming processes is thoroughly discussed and failure onset zones due to anisotropic ductile damage growth are predicted and the results were consistent with the literature. Finally, by making an assumption that kinematic hardening can be ignored, an elastic predictor/plastic corrector algorithm requiring the solution of one equation is introduced. The assessment of the developed one-equation return-mapping algorithm is carried out by applying it to the simulation of the tensile test of a pre-notched bar. The Central Prossessing Unit time decreases noticeably using one-equation return mapping algorithm compared to the conventional return mapping algorithm and the numerical results are in good agreement with previous numerical simulations and experiments.