In this study, we report the molecular and enzymatic characterisation of Spg103, a novel bifunctional β-glucanase from the marine bacterium Streptomyces sp. J103. Recombinant Spg103 (rSpg103) functioned optimally at 60 °C and pH 6. Notably, Spg103 exhibited distinct stability properties, with increased activity in the presence of Na+ and EDTA. Spg103 displays both lichenase and cellobiohydrolase activity. Despite possessing a GH5 cellulase domain, FN3 and CBM3 domains characteristic of cellulases and CBHs, biochemical assays showed that rSpg103 exhibited higher activity towards mixed β-1,3-1,4-glucan such as barley β-glucan and lichenan than towards beta-1,4-linkages. The endolytic activity of the enzyme was confirmed by TLC and UPLC-MS analyses, which identified cellotriose as the main hydrolysis product. In addition, Spg103 exhibited an exo-type activity, selectively releasing cellobiose units from cellooligosaccharides, which is characteristic of cellobiohydrolases. These results demonstrate the potential of Spg103 for a variety of biotechnological applications, particularly those requiring tailor-made enzymatic degradation of mixed-linked β-glucans. This study provides a basis for further structural and functional investigations of the bifunctional enzyme and highlights Spg103 as a promising candidate for industrial applications.
Saprolegniasis is one of the most devastating oomycete diseases in freshwater fish which is caused by species in the genus Saprolegnia including Saprolegnia parasitica. In this study, we isolated the strain of S. parasitica from diseased rainbow trout in Korea. Morphological and molecular based identification confirmed that isolated oomycete belongs to the member of S. parasitica, supported by its typical features including cotton-like mycelium, zoospores and phylogenetic analysis with internal transcribed spacer region. Pathogenicity of isolated S. parasitica was developed in embryo, juvenile, and adult zebrafish as a disease model. Host-pathogen interaction in adult zebrafish was investigated at transcriptional level. Upon infection with S. parasitica, pathogen/antigen recognition and signaling (TLR2, TLR4b, TLR5b, NOD1, and major histocompatibility complex class I), pro/anti-inflammatory cytokines (interleukin [IL]-1β, tumor necrosis factor α, IL-6, IL-8, interferon γ, IL-12, and IL-10), matrix metalloproteinase (MMP9 and MMP13), cell surface molecules (CD8+ and CD4+) and antioxidant enzymes (superoxide dismutase, catalase) related genes were differentially modulated at 3- and 12-hr post infection. As an anti-Saprolegnia agent, plant based lawsone was applied to investigate on the susceptibility of S. parasitica showing the minimum inhibitory concentration and percentage inhibition of radial growth as 200 μg/mL and 31.8%, respectively. Moreover, natural lawsone changed the membrane permeability of S. parasitica mycelium and caused irreversible damage and disintegration to the cellular membranes of S. parasitica. Transcriptional responses of the genes of S. parasitica mycelium exposed to lawsone were altered, indicating that lawsone could be a potential anti-S. parasitica agent for controlling S. parasitica infection.
Anticoagulant activities of a fermented edible brown alga, Laminaria ochotensis was investigated. L. ochotensis was fermented with 15% sugar (w/v) at 25℃ for 10 weeks. Anticoagulant activity was measured from the supernatant of algal mixture at biweekly intervals up to 10 th week by activated partial thromboplastin (APTT), prothrombin time (PT) and thrombin time (TT) assay using citrated human plasma. Sample having high APTT activity (6 th week) was filtered, ethanol precipitated and freeze-dried. The polysaccharide compound having anticoagulant activity was purified by DEAE ion exchange chromatography followed by Sepharose-4B gel filtration chromatography. Anticoagulant activity, polysaccharide concentration, and heparin like activity were determined for the collected fractions by APTT, phenol-H₂SO₄, and glycosaminoglycan assay, respectively. The anticoagulant activity assay showed that the activity was increased up to 6 th week, and decreased thereafter. The concentration of our purified compound was 31.0 ㎍/㎖ and showed higher APTT activity than commercial heparin. At the same concentration of 31.0 ㎍/㎖, the heparin showed 186.5 sec activity while our purified compound showed an activity of 386 sec. Single spot on agarose gel electrophoresis showed that the compound was purified and polyacrylamide gel electrophoresis (PAGE) results revealed that the molecular mass of the purified polysaccharide compound was between 60 and 500 kDa. Therapeutic interest of the algal polysaccharide as an anticoagulant has recently been in highlighted. This purified anticoagulant compound from fermented L. ochotensis can be used as a model for anticoagulant agent or could be developed as an anticoagulant agent. This study can be extended to identify the structure and chemical composition of the purified polysaccharide, and to establish a relationship between structure and the function of the identified anticoagulant compounds.