The process of tumorigenesis requires cellular transformation, hyperproliferation, invasion, angiogenesis, and metastasis. Several genes that mediate these processes are regulated by the transcription factor nuclear factor-kappaB (NF-kappaB). The latter is activated by various carcinogens, inflammatory agents, and tumor promoters. Thus, agents that can suppress NF-kappaB activation have the potential to suppress carcinogenesis. Ursolic acid, a pentacyclic triterpene acid, has been shown to suppress the expression of several genes associated with tumorigenesis, but whether ursolic acid mediates its effects through suppression of NF-kappaB is not understood. In the study described in the present report, we found that ursolic acid suppressed NF-kappaB activation induced by various carcinogens including tumor necrosis factor (TNF), phorbol ester, okadaic acid, H(2)O(2), and cigarette smoke. These effects were not cell type specific. Ursolic acid inhibited DNA binding of NF-kappaB consisting of p50 and p65. Ursolic acid inhibited IkappaBalpha degradation, IkappaBalpha phosphorylation, IkappaBalpha kinase activation, p65 phosphorylation, p65 nuclear translocation, and NF-kappaB-dependent reporter gene expression. Ursolic acid also inhibited NF-kappaB-dependent reporter gene expression activated by TNF receptor, TNF receptor-associated death domain, TNF receptor-associated factor, NF-kappaB-inducing kinase, IkappaBalpha kinase, and p65. The inhibition of NF-kappaB activation correlated with suppression of NF-kappaB-dependent cyclin D1, cyclooxygenase 2, and matrix metalloproteinase 9 expression. Thus, overall, our results indicate that ursolic acid inhibits IkappaBalpha kinase and p65 phosphorylation, leading to the suppression of NF-kappaB activation induced by various carcinogens. These actions of ursolic acid may mediate its antitumorigenic and chemosensitizing effects.
A bstract : The activation of nuclear transcription factor κB has now been linked with a variety of inflammatory diseases, including cancer, atherosclerosis, myocardial infarction, diabetes, allergy, asthma, arthritis, Crohn's disease, multiple sclerosis, Alzheimer's disease, osteoporosis, psoriasis, septic shock, and AIDS. Extensive research in the last few years has shown that the pathway that activates this transcription factor can be interrupted by phytochemicals derived from spices such as turmeric (curcumin), red pepper (capsaicin), cloves (eugenol), ginger (gingerol), cumin, anise, and fennel (anethol), basil and rosemary (ursolic acid), garlic (diallyl sulfide, S ‐allylmercaptocysteine, ajoene), and pomegranate (ellagic acid). For the first time, therefore, research provides “reasoning for seasoning.”
Nuclear Factor-kappaB (NF-kappaB) activation and COX-2 overexpression have been reported in head and neck cancer, but the relationship between these proteins remains to be investigated. To determine the relationship between NF-kappaB and COX-2 in Smokeless Tobacco (ST) associated oral tumorigenesis, we performed immunohistochemistry in serial sections from 107 OSCCs, 78 oral precancerous lesions (OPLs) (58 hyperplasias, 20 dysplasias) and 15 histologically normal oral tissues and correlated with clinicopathological data. Significant increase in NF-kappaB and COX-2 immunopositivity was observed from normal oral mucosa to OPLs to OSCCs (p = 0.009 and p = 0.002 respectively). Upregulation of NF-kappaB and COX-2 was observed as early as in hyperplasia [p = 0.006; OR = 6.1 and p = 0.003; OR = 7.6, respectively]. Expression of both proteins was found to be significantly associated in OPLs (p = 0.000; OR = 12.6) and OSCCs (p = 0.001; OR = 4.0). Intriguingly, khaini consumption correlated with NF-kappaB immunopositivity in OPLs (p = 0.05, OR = 3.8) and OSCCs (p = 0.01, OR = 3.4) and with COX-2 expression in OPLs (p = 0.03; OR = 4.3). In vitro experimental system of ST associated oral carcinogenesis was used to demonstrate ST (khaini) and NNK mediated activation of NF-kappaB and COX-2, supporting the clinical data. In conclusion, this study demonstrates correlation between over expression of NF-kappaB and COX-2 in early precancerous stages of development of oral cancer and sustained elevation down the tumorigenic pathway, underscoring their potential as targets for early intervention. In vitro studies demonstrated that NNK may be one of the carcinogenic components of ST (khaini) inducing activation of NF-kappaB and COX-2 in oral precancer and cancer cells, suggesting plausible role in ST-induced oral carcinogenesis.