The identification of genomic loci that are associated with osteoarthritis (OA) has provided a starting point for understanding how genetic variation activates catabolic processes in the joint. However, genetic variants can only alter gene expression and cellular function when the epigenetic environment is permissive to these effects. In this review, we provide examples of how epigenetic shifts at distinct life stages can alter the risk for OA, which we posit is critical for the proper interpretation of genome-wide association studies (GWAS). During development, intensive work on the growth and differentiation factor 5 (
Cell-based therapies such as tissue engineering provide promising therapeutic possibilities to enhance the repair or regeneration of damaged or diseased tissues but are dependent on the availability and controlled manipulation of appropriate cell sources.The goal of this study was to test the hypothesis that adult subcutaneous fat contains stem cells with multilineage potential and to determine the influence of specific soluble mediators and biomaterial scaffolds on their differentiation into musculoskeletal phenotypes.We reviewed recent studies showing the stem-like characteristics and multipotency of adipose-derived stem cells (ASCs), and their potential application in cell-based therapies in orthopaedics.Under controlled conditions, ASCs show phenotypic characteristics of various cell types, including chondrocytes, osteoblasts, adipocytes, neuronal cells, or muscle cells. In particular, the chondrogenic differentiation of ASCs can be induced by low oxygen tension, growth factors such as bone morphogenetic protein-6 (BMP-6), or biomaterial scaffolds consisting of native tissue matrices derived from cartilage. Finally, focus is given to the development of a functional biomaterial scaffold that can provide ASC-based constructs with mechanical properties similar to native cartilage.Adipose tissue contains an abundant source of multipotent progenitor cells. These cells show cell surface marker profiles and differentiation characteristics that are similar to but distinct from other adult stem cells, such as bone marrow mesenchymal stem cells (MSCs).The availability of an easily accessible and reproducible cell source may greatly facilitate the development of new cell-based therapies for regenerative medicine applications in the musculoskeletal system.
Abstract Osteoarthritis affects millions worldwide, yet effective treatments remain elusive due to poorly understood molecular mechanisms. While genome-wide association studies (GWAS) have identified over 100 OA-associated loci, identifying the genes impacted at each locus remains challenging. Several studies have mapped expression quantitative trait loci (eQTL) in chondrocytes and colocalized them with OA GWAS variants to identify putative OA risk genes; however, the degree to which genetic variants influence OA risk via alternative splicing has not been explored. We investigated the role of alternative splicing in OA pathogenesis using RNA-seq data from 101 human chondrocyte samples treated with PBS (control) or fibronectin fragment (FN-f), an OA trigger. We identified 590 differentially spliced genes between conditions, with FN-f inducing splicing events similar to those in primary OA tissue. We used CRISPR/Cas9 to mimic an SNRNP70 splicing event observed in OA and FN-f-treated chondrocytes and found that it induced an OA-like expression pattern. Integration with genotyping data revealed 7,188 splicing quantitative trait loci (sQTL) affecting 3,056 genes. While many sQTLs were shared, we identified 738 and 343 condition-specific sQTLs for control and FN-f, respectively. We identified 15 RNA binding proteins whose binding sites were enriched at sQTL splice junctions and found that expression of those RNA binding proteins correlated with exon inclusion. Colocalization with OA GWAS identified 6 putative risk genes, including a novel candidate, PBRM1. Our study highlights the significant impact of alternative splicing in OA and provides potential therapeutic targets for future research.
Intervertebral disc degeneration is highly prevalent within the elderly population and is a leading cause of chronic back pain and disability. Due to the link between disc degeneration and senescence, we explored the ability of the Dasatinib and Quercetin drug combination (D + Q) to prevent an age-dependent progression of disc degeneration in mice. We treated C57BL/6 mice beginning at 6, 14, and 18 months of age, and analyzed them at 23 months of age. Interestingly, 6- and 14-month D + Q cohorts show lower incidences of degeneration, and the treatment results in a significant decrease in senescence markers p16INK4a, p19ARF, and SASP molecules IL-6 and MMP13. Treatment also preserves cell viability, phenotype, and matrix content. Although transcriptomic analysis shows disc compartment-specific effects of the treatment, cell death and cytokine response pathways are commonly modulated across tissue types. Results suggest that senolytics may provide an attractive strategy to mitigating age-dependent disc degeneration.
Objectives: Adipose-derived stem cells (ASCs) and bone marrow–derived mesenchymal stem cells (MSCs) are multipotent adult stem cells with potential for use in cartilage tissue engineering. We hypothesized that these cells show distinct responses to different chondrogenic culture conditions and extracellular matrices, illustrating important differences between cell types. Methods: Human ASCs and MSCs were chondrogenically differentiated in alginate beads or a novel scaffold of reconstituted native cartilage–derived matrix with a range of growth factors, including dexamethasone, transforming growth factor β3, and bone morphogenetic protein 6. Constructs were analyzed for gene expression and matrix synthesis. Results: Chondrogenic growth factors induced a chondrocytic phenotype in both ASCs and MSCs in alginate beads or cartilage-derived matrix. MSCs demonstrated enhanced type II collagen gene expression and matrix synthesis as well as a greater propensity for the hypertrophic chondrocyte phenotype. ASCs had higher upregulation of aggrecan gene expression in response to bone morphogenetic protein 6 (857-fold), while MSCs responded more favorably to transforming growth factor β3 (573-fold increase). Conclusions: ASCs and MSCs are distinct cell types as illustrated by their unique responses to growth factor–based chondrogenic induction. This chondrogenic induction is affected by the composition of the scaffold and the presence of serum.