In 2017, the European Union (EU) Committee for Risk Assessment (RAC) recommended the classification of metallic cobalt (Co) as Category 1B with respect to its carcinogenic and reproductive hazard potential and Category 2 for mutagenicity but did not evaluate the relevance of these classifications for patients exposed to Co-containing alloys (CoCA) used in medical devices. CoCA are inherently different materials from Co metal from a toxicological perspective and thus require a separate assessment. CoCA are biocompatible materials with a unique combination of properties including strength, durability, and a long history of safe use that make them uniquely suited for use in a wide-range of medical devices. Assessments were performed on relevant preclinical and clinical carcinogenicity and reproductive toxicity data for Co and CoCA to meet the requirements under the EU Medical Device Regulation triggered by the ECHA re-classification (adopted in October 2019 under the 14th Adaptation to Technical Progress to CLP) and to address their relevance to patient safety. The objective of this review is to present an integrated overview of these assessments, a benefit-risk assessment and an examination of potential alternative materials. The data support the conclusion that the exposure to CoCA in medical devices via clinically relevant routes does not represent a hazard for carcinogenicity or reproductive toxicity. Additionally, the risk for the adverse effects that are known to occur with elevated Co concentrations (e.g., cardiomyopathy) are very low for CoCA implant devices (infrequent reports often reflecting a unique catastrophic failure event out of millions of patients) and negligible for CoCA non-implant devices (not measurable/no case reports). In conclusion, the favorable benefit-risk profile also in relation to possible alternatives presented herein strongly support continued use of CoCA in medical devices.
After tendon rupture repair, two main problems may occur: re-rupture and adhesion formation. Suitable non-murine animal models are needed to study the healing tendon in terms of biomechanical properties and extent of adhesion formation. In this study 24 New Zealand White rabbits received a full transection of the Achilles tendon 2 cm above the calcaneus, sutured with a 4-strand Becker suture. Post-surgical analysis was performed at 3, 6 and 12 weeks. In the 6-week group, animals received a cast either in a 180 deg stretched position during 6 weeks (adhesion provoking immobilization), or were re-casted with a 150 deg position after 3 weeks (adhesion inhibiting immobilization), while in the other groups (3 and 12 weeks) a 180 deg position cast was applied for 3 weeks. Adhesion extent was analyzed by histology and ultrasound. Histopathological scoring was performed according to a method by Stoll et al. (2011), and the main biomechanical properties were assessed. Histopathological scores increased as a function of time, but did not reach values of healthy tendons after 12 weeks (only around 15 out of 20 points). Adhesion provoking immobilization led to an adhesion extent of 82.7±9.7%, while adhesion inhibiting immobilization led to 31.9±9.8% after 6 weeks. Biomechanical properties increased over time, however, they did not reach full strength nor elastic modulus at 12 weeks post-operation. Furthermore, the rabbit Achilles tendon model can be modulated in terms of adhesion formation to the surrounding tissue. It clearly shows the different healing stages in terms of histopathology and offers a suitable model regarding biomechanics because it exhibits similar biomechanics as the human flexor tendons of the hand.
Purpose . One of the great challenges in surgical tendon rupture repair is to minimize peritendinous adhesions. In order to reduce adhesion formation, a physical barrier was applied to a sutured rabbit Achilles tendon, with two different immobilization protocols used postoperatively. Methods . Thirty New Zealand white rabbits received a laceration on the Achilles tendon, sutured with a 4-strand Becker suture, and half of the rabbits got a DegraPol tube at the repair site. While fifteen rabbits had their treated hind leg in a 180° stretched position during 6 weeks (adhesion provoking immobilization), the other fifteen rabbits were recasted with a 150° position after 3 weeks (adhesion inhibiting immobilization). Adhesion extent was analysed macroscopically, via ultrasound and histology. Inflammation was determined histologically. Biomechanical properties were analysed. Results . Application of a DegraPol tube reduced adhesion formation by approximately 20%—independently of the immobilization protocol. Biomechanical properties of extracted specimen were not affected by the tube application. There was no serious inflammatory reaction towards the implant material. Conclusions . Implantation of a DegraPol tube tightly set around a sutured tendon acts as a beneficial physical barrier and prevents adhesion formation significantly—without affecting the tendon healing process.
BackgroundFor a successful total hip arthroplasty, the final position of the trial rasp should be adopted by the femoral stem to achieve correct positioning. This study aimed to characterize the discrepancy of the stem and rasp position in vivo of a widely used dual-tapered straight stem with rectangular cross section that is known to have an oversized stem with respect to the rasp.MethodsThe distances between the tip of the greater trochanter and the shoulder of the implant and rasp were measured on 39 intraoperatively acquired fluoroscopic image pairs. Leg-length discrepancy was also measured clinically before and after surgery.ResultsA paired t-test showed a significant average protrusion of the femoral stem with respect to the final rasp position of 2.63 mm (standard deviation = 2.3 mm, P < .001), while 88% of the cases had no leg-length discrepancy after surgery. The quantified stem protrusion was statistically significant but did not reach clinical relevance and was easily mitigated in our study.ConclusionsThe quantified stem protrusion appears to be clinically manageable, as only 2 cases required attenuation of stem positioning: in one case by the use of a femoral head with a shorter neck and in the other case by rerasping the femoral bed. Neither case was associated with the most extreme differences in position of the stem with respect to the final rasp. In addition, the used stem shows good overall outcomes in other studies. It appears that factors other than stem and rasp position play a critical role to the surgeon and for total hip arthroplasty success.
The suture-tendon interface is often the weakest link in tendon to bone repair of massive rotator cuff tears. Genipin is a low-toxicity collagen crosslinker derived from the gardenia fruit that has been shown to augment collagen tissue strength and mechanically arrest tendon-tear progression.The purpose of the current study was to evaluate whether genipin crosslinking can sufficiently augment the suture-tendon interface to improve suture pullout strength using simple single-loop sutures and the modified Mason-Allen technique. The study also aimed to assess whether time of genipin treatment is a relevant factor in efficacy.In an ex vivo (cadaveric) sheep rotator cuff tendon model, a total of 142 suture pullout tests were performed on 32 infraspinatus tendons. Each tendon was prepared with three single-loop stitches. Two groups were pretreated by incubation in genipin solution for either 4 hours or 24 hours. Two corresponding control groups were incubated in phosphate buffered saline for the same periods. The same test protocol was applied to tendons using modified Mason-Allen technique stitch patterns. Each suture was loaded to failure on a universal materials testing machine. Suture pullout force, stiffness, and work to failure were calculated from force-displacement data, and then compared among the groups.Median single-loop pullout force on tendons incubated for 24 hours in genipin yielded an approximately 30% increase in maximum pullout force for single-loop stitches with a median of 73 N (range, 56-114 N) compared with 56 N (range, 40-69 N; difference of medians = 17 N; p = 0.028), with corresponding increases in the required work to failure but not stiffness. Genipin treatment for 4 hours showed no added benefit for suture-pullout behavior (46 N, [range, 35-95 N] versus 45 N, [range, 28-63 N]; difference of medians, 1 N; p = 1). No tested genipin crosslinking conditions indicated benefit for tendons grasped using the modified Mason-Allen technique after 4 hours (162 N, [range, 143-193 N] versus 140 N, [range, 129-151 N]; difference of medians, 22 N; p = 0.114) or after 24 hours of crosslinking (172 N, [range, 42-183 N] versus 164 N [range, 151-180 N]; difference of medians, 8 N; p = 0.886).Exogenous collagen crosslinking in genipin can markedly improve resistance to pullout at the tendon-suture interface for simple stitch patterns while the modified Mason-Allen stitch showed no benefit in an ex vivo animal model.Tendon strength augmentation by genipin pretreatment offers the potential to improve suture retention properties. Future studies are warranted for the development of clinically viable intraoperative delivery strategies and in vivo testing for safety and efficacy.
In 2020, the European Commission up-classified metal cobalt as Class 1B Carcinogen (presumed to have carcinogenic potential) based primarily on data from rodent inhalation carcinogenicity studies. This up-classification requires an assessment under the Medical Device Regulations of cobalt cancer risk from medical devices. We performed a systematic review and meta-analysis to evaluate site-specific cancer risks with cobalt exposure from either total joint replacement (TJR) or occupational exposure (OC). Results were stratified by exposure type (OC or TJR), exposure level (metal-on-metal (MoM) or non-MoM), follow-up duration (latency period: <5, 5–10 or >10 years), and cancer incidence or mortality (detection bias assessment). From 30 studies (653,104 subjects, average 14.5 years follow-up), the association between TJR/OC and cancer risk was null for 22 of 27 cancer sites, negative for 3 sites, and positive for prostate cancer and myeloma. Significant heterogeneity and large estimate ranges were observed for many cancer sites. No significant increase in estimates was observed by exposure level or follow-up duration. The current evidence, including weak associations, heterogeneity across studies and no increased association with exposure level or follow-up duration, is insufficient to conclude that there exists an increased risk for people exposed to cobalt in TJR/OC of developing site-specific cancers.
In 2020, the European Commission up-classified pure cobalt metal to a Category 1B hazard, based primarily on data from rodent inhalation carcinogenicity studies of metallic cobalt. The European Commission review did not evaluate cobalt-containing alloys in medical devices, which have very different properties vs. pure cobalt metal and did not include a systematic epidemiologic review. We performed a systematic review and meta-analysis of published, peer-reviewed epidemiologic studies evaluating the association between overall cancer risk and exposure to orthopedic implants containing cobalt alloys or cobalt particulates in occupational settings. Study-specific estimates were pooled using random-effects models. Analyses included 20 papers on orthopedic implants and 10 occupational cohort papers (~1 million individuals). The meta-analysis summary estimates (95% confidence intervals) for overall cancer risk were 1.00 (0.96–1.04) overall and 0.97 (0.94–1.00) among high-quality studies. Results were also similar in analyses stratified by type of exposure/data sources (occupational cohort, implant registry or database), comparators (general or implant population), cancer incidence or mortality, follow-up duration (latency period), and study precision. In conclusion, meta-analysis found no association between exposure to orthopedic implants containing cobalt alloys or cobalt particulates in occupational settings and overall cancer risk, including an analysis of studies directly comparing metal-on-metal vs. non-metal-on-metal implants.