The inner profile of Dark Matter (DM) halos remains one of the central problems in small-scale cosmology. At present, the problem can not be resolved in dwarf spheroidal galaxies due to a degeneracy between the DM profile and the velocity anisotropy beta of the stellar population. We discuss a method which can break the degeneracy by exploiting 3D positions and 1D line-of-sight (LOS) velocities. With the full 3D spatial information, we can determine precisely what fraction of each stars LOS motion is in the radial and tangential direction. This enables us to infer the anisotropy parameter beta directly from the data. The method is particularly effective if the galaxy is highly anisotropic. Finally, we argue that such a test could be applied to Sagittarius and potentially other dwarfs with RR Lyrae providing the necessary depth information.
It is shown that a Weakly Interacting Massive dark matter Particle (WIMP) interpretation for the positron excess observed in a variety of experiments, HEAT, PAMELA, and AMS-02, is highly constrained by the Fermi/LAT observations of dwarf galaxies. In particular, this paper examines the annihilation channels that best fit the current AMS-02 data (Boudaud et al., 2014), specifically focusing on channels and parameter space not previously explored by the Fermi/LAT collaboration. The Fermi satellite has surveyed the γ-ray sky, and its observations of dwarf satellites are used to place strong bounds on the annihilation of WIMPs into a variety of channels. For the single channel case, we find that dark matter annihilation into {b,e+e-, μ+μ-, τ+τ-,4-e or 4-τ } is ruled out as an explanation of the AMS positron excess (here b quarks are a proxy for all quarks, gauge and Higgs bosons). In addition, we find that the Fermi/LAT 2σ upper limits, assuming the best-fit AMS-02 branching ratios, exclude multichannel combinations into b and leptons. The tension between the results might relax if the branching ratios are allowed to deviate from their best-fit values, though a substantial change would be required. Of all the channels we considered, the only viable channel that survives the Fermi/LAT constraint and produces a good fit to the AMS-02 data is annihilation (via a mediator) to 4-μ, or mainly to 4-μ in the case of multichannel combinations.
In the Gaia era, understanding the effects of perturbations of the Galactic disc is of major importance in the context of dynamical modelling. In this theoretical paper, we extend previous work in which, making use of the epicyclic approximation, the linearized Boltzmann equation had been used to explicitly compute, away from resonances, the perturbed distribution function of a Galactic thin disc population in the presence of a non-axisymmetric perturbation of constant amplitude. Here we improve this theoretical framework in two distinct ways in the new code that we present. First, we use better estimates for the action-angle variables away from quasi-circular orbits, computed from the AGAMA software, and we present an efficient routine to numerically re-express any perturbing potential in these coordinates with an accuracy well below the percent level. The use of more accurate action estimates allows us to identify resonances such as the outer 1:1 bar resonance at larger azimuthal velocities than the outer Lindblad resonance, and to extend our previous theoretical results well above the Galactic plane, where we explicitly show how they differ from the epicyclic approximation. In particular, the displacement of resonances in velocity space as a function of height can in principle constrain the 3D structure of the Galactic potential. Second, we allow the perturbation to be time-dependent, thereby allowing us to model the effect of transient spiral arms or of a growing bar. The theoretical framework and tools presented here will be useful for a thorough analytical dynamical modelling of the complex velocity distribution of disc stars as measured by past and upcoming Gaia data releases.
Sky survey telescopes and powerful targeted telescopes play complementary roles in astronomy. In order to investigate the nature and characteristics of the motions of very faint objects, a flexibly-pointed instrument capable of high astrometric accuracy is an ideal complement to current astrometric surveys and a unique tool for precision astrophysics. Such a space-based mission will push the frontier of precision astrometry from evidence of Earth-mass habitable worlds around the nearest stars, to distant Milky Way objects, and out to the Local Group of galaxies. As we enter the era of the James Webb Space Telescope and the new ground-based, adaptive-optics-enabled giant telescopes, by obtaining these high precision measurements on key objects that Gaia could not reach, a mission that focuses on high precision astrometry science can consolidate our theoretical understanding of the local Universe, enable extrapolation of physical processes to remote redshifts, and derive a much more consistent picture of cosmological evolution and the likely fate of our cosmos. Already several missions have been proposed to address the science case of faint objects in motion using high precision astrometry missions: NEAT proposed for the ESA M3 opportunity, micro-NEAT for the S1 opportunity, and Theia for the M4 and M5 opportunities. Additional new mission configurations adapted with technological innovations could be envisioned to pursue accurate measurements of these extremely small motions. The goal of this White Paper is to address the fundamental science questions that are at stake when we focus on the motions of faint sky objects and to briefly review instrumentation and mission profiles.
In SuperCool Inflation (SCI), a technically natural and thermal effect gives a graceful exit to old inflation. The Universe starts off hot and trapped in a false vacuum. The Universe supercools and inflates solving the horizon and flatness problems. The inflaton couples to a set of QCD like fermions. When the fermions' non-Abelian gauge group freezes, the Yukawa terms generate a tadpole for the inflaton, which removes the barrier. Inflation ends, and the Universe rapidly reheats. The thermal effect is technically natural in the same way that the QCD scale is technically natural. In fact, Witten used a similar mechanism to drive the Electro-Weak (EW) phase transition; critically, no scalar field drives inflation, which allows SCI to avoid eternal inflation and the measure problem. SCI also works at scales, which can be probed in the lab, and could be connected to EW symmetry breaking. Finally, we introduce a light spectator field to generate density perturbations, which match the CMB. The light field does not affect the inflationary dynamics and can potentially generate non-Gaussianities and isocurvature perturbations observable with Planck.
The DAMA/NaI and DAMA/LIBRA annual modulation data, which may be interpreted as a signal for the existence of weakly interacting dark matter (WIMPs) in our galactic halo, are re-examined in light of new measurements of the local velocity relative to the galactic halo. In the vicinity of the Sun, the velocity of the Galactic disk has been estimated to be 250 km/s rather than 220 km/s. Our analysis is performed both with and without the channeling effect included. The best fit regions to the DAMA data are shown to move to slightly lower WIMP masses. Compatibility of DAMA data with null results from other experiments (CDMS, XENON10, and CRESST I) is investigated given these new velocities. A small region of spin-independent (elastic) scattering for 7-8 GeV WIMP masses remains at 3$σ$. Spin-dependent scattering off of protons is viable for 5-15 GeV WIMP masses for direct detection experiments (but has been argued by others to be further constrained by Super-Kamiokande due to annihilation in the Sun).
If the cosmological dark matter has a component made of small primordial black holes, they may have a significant impact on the physics of the first stars and on the subsequent formation of massive black holes. Primordial black holes would be adiabatically contracted into these stars and then would sink to the stellar center by dynamical friction, creating a larger black hole which may quickly swallow the whole star. If these primordial black holes are heavier than $\sim 10^{22} {\rm g}$, the first stars would likely live only for a very short time and would not contribute much to the reionization of the universe. They would instead become $10 - 10^3 M_\odot$ black holes which (depending on subsequent accretion) could serve as seeds for the super--massive black holes seen at high redshifts as well as those inside galaxies today.
In the Gaia era, understanding the effects of the perturbations of the Galactic disc is of major importance in the context of dynamical modelling. In this theoretical paper we extend previous work in which, making use of the epicyclic approximation, the linearized Boltzmann equation had been used to explicitly compute, away from resonances, the perturbed distribution function of a Galactic thin-disc population in the presence of a non-axisymmetric perturbation of constant amplitude. Here we improve this theoretical framework in two distinct ways in the new code that we present. First, we use better estimates for the action-angle variables away from quasi-circular orbits, computed from the AGAMA software, and we present an efficient routine to numerically re-express any perturbing potential in these coordinates with a typical accuracy at the per cent level. The use of more accurate action estimates allows us to identify resonances such as the outer 1:1 bar resonance at higher azimuthal velocities than the outer Lindblad resonance (OLR), and to extend our previous theoretical results well above the Galactic plane, where we explicitly show how they differ from the epicyclic approximation. In particular, the displacement of resonances in velocity space as a function of height can in principle constrain the 3D structure of the Galactic potential. Second, we allow the perturbation to be time dependent, thereby allowing us to model the effect of transient spiral arms or a growing bar. The theoretical framework and tools presented here will be useful for a thorough analytical dynamical modelling of the complex velocity distribution of disc stars as measured by past and upcoming Gaia data releases.
Recently, observations by PAMELA, the Fermi Gamma Ray Space Telescope, and other cosmic ray experiments have generated a great deal of interest in dark matter (DM) particles which annihilate at a high rate to leptons. In this letter, we explore the possibility of using large volume neutrino telescopes, such as IceCube, to constrain such models; specifically we consider signals due to DM annihilation in the inner Milky Way. We find that, if Dark Matter annihilations are responsible for the signals observed by PAMELA and FGST, then IceCube (in conjunction with the planned low threshold extension, DeepCore) should detect or exclude the corresponding neutrino signal from the inner Milky Way with a few years of observation.