Mantle cell lymphoma (MCL) is one of the most aggressive B-cell lymphomas with a median patient survival of only 5-7 years. The failure of existing therapies is mainly due to disease relapse when therapy-resistant tumor cells remain after chemotherapy. Therefore, development and testing of novel therapeutic strategies to target these therapy-resistant MCL are needed. Here, we developed an in vivo model of therapy-resistant MCL by transplanting a patient-derived MCL cell line (Granta 519) into NOD/SCID mice followed by treatment with combination chemotherapy. Cytomorphologic, immunophenotypic, in vitro and in vivo growth analyses of these therapy-resistant MCL cells confirm their MCL origin and resistance to chemotherapy. Moreover, quantitative real-time PCR revealed the upregulation of GLI transcription factors, which are mediators of the hedgehog signaling pathway, in these therapy-resistant MCL cells. Therefore, we developed an effective therapeutic strategy for resistant MCL by treating the NOD/SCID mice bearing Granta 519 MCL with CHOP chemotherapy to reduce tumor burden combined with GLI-antisense oligonucleotides or bortezomib, a proteosome inhibitor, to target therapy-resistant MCL cells that remained after chemotherapy. This regimen was followed by treatment with MCL-specific cytotoxic T lymphocytes to eliminate all detectable leftover minimal residual disease. Mice treated with this strategy showed a significantly increased survival and decreased tumor burden compared to the mice in all other groups. Such therapeutic strategies that combine chemotherapy with targeted therapy followed by tumor-specific immunotherapy are effective and have excellent potential for clinical application to provide long-term, disease-free survival in MCL patients.
Abstract Mantle cell lymphoma (MCL) has one of the worst clinical outcomes among the B-cell lymphomas, with a median survival of only 3 to 4 years. Therefore, a better understanding of the underlying mechanisms that regulate MCL proliferation/survival is needed to develop an effective therapy. Because sonic hedgehog (Shh)-GLI signaling has been shown to be important in the proliferation and survival of several cancers, and no such information is available for MCL, this study was undertaken. Our results show that the molecules associated with Shh-GLI signaling, such as PTCH and SMO receptors, and GLI1 and GLI2 target transcription factors were expressed in the human MCL cell lines and primary MCL cells from patients. Perturbation of this signaling in the presence of exogenous Shh/cyclopamine significantly (P < 0.001) influenced the proliferation of JVM2 MCL cells. Furthermore, down-regulation of GLI transcription factors using antisense oligonucleotides not only resulted in significantly (P < 0.001) decreased proliferation of the MCL cells but also significantly (P < 0.05) increased their susceptibility to chemotherapeutic drug, doxorubicin. Also, down-regulation of GLI decreased cyclin D1 and BCL2 transcript levels, which suggests that these key molecules might be regulated by GLI in MCL. Thus, our results indicate a significant role for Shh-GLI signaling in the proliferation of MCL, and molecular targeting of GLI is a potential therapeutic approach to improve the treatment for MCL. [Mol Cancer Ther 2008;7(6):1450–60]
<div>Abstract<p>Mantle cell lymphoma (MCL) has one of the worst clinical outcomes among the B-cell lymphomas, with a median survival of only 3 to 4 years. Therefore, a better understanding of the underlying mechanisms that regulate MCL proliferation/survival is needed to develop an effective therapy. Because sonic hedgehog (Shh)-GLI signaling has been shown to be important in the proliferation and survival of several cancers, and no such information is available for MCL, this study was undertaken. Our results show that the molecules associated with Shh-GLI signaling, such as PTCH and SMO receptors, and GLI1 and GLI2 target transcription factors were expressed in the human MCL cell lines and primary MCL cells from patients. Perturbation of this signaling in the presence of exogenous Shh/cyclopamine significantly (<i>P</i> < 0.001) influenced the proliferation of JVM2 MCL cells. Furthermore, down-regulation of GLI transcription factors using antisense oligonucleotides not only resulted in significantly (<i>P</i> < 0.001) decreased proliferation of the MCL cells but also significantly (<i>P</i> < 0.05) increased their susceptibility to chemotherapeutic drug, doxorubicin. Also, down-regulation of GLI decreased cyclin D1 and BCL2 transcript levels, which suggests that these key molecules might be regulated by GLI in MCL. Thus, our results indicate a significant role for Shh-GLI signaling in the proliferation of MCL, and molecular targeting of GLI is a potential therapeutic approach to improve the treatment for MCL. [Mol Cancer Ther 2008;7(6):1450–60]</p></div>
Domain V of Escherichia coli 23 S rRNA (residues 2023-2630) was replaced by that from Staphylococcus aureus, thereby introducing 132 changes in the rRNA sequence. The resulting ribosomal mutant was unable to support cell growth. The mutant was rescued, however, by restoring an interaction between domains IV and V (residues 1782 and 2586). Although the importance of this interaction, U/U in E. coli, C/C in S. aureus, is therefore demonstrated, it cannot be the only tertiary interaction important for ribosomal function as the rescued hybrid grew more slowly than the wild type. Additionally, although the single-site mutations U1782C and U2586C in E. coli are viable, the double mutant is lethal.
<div>Abstract<p>Mantle cell lymphoma (MCL) has one of the worst clinical outcomes among the B-cell lymphomas, with a median survival of only 3 to 4 years. Therefore, a better understanding of the underlying mechanisms that regulate MCL proliferation/survival is needed to develop an effective therapy. Because sonic hedgehog (Shh)-GLI signaling has been shown to be important in the proliferation and survival of several cancers, and no such information is available for MCL, this study was undertaken. Our results show that the molecules associated with Shh-GLI signaling, such as PTCH and SMO receptors, and GLI1 and GLI2 target transcription factors were expressed in the human MCL cell lines and primary MCL cells from patients. Perturbation of this signaling in the presence of exogenous Shh/cyclopamine significantly (<i>P</i> < 0.001) influenced the proliferation of JVM2 MCL cells. Furthermore, down-regulation of GLI transcription factors using antisense oligonucleotides not only resulted in significantly (<i>P</i> < 0.001) decreased proliferation of the MCL cells but also significantly (<i>P</i> < 0.05) increased their susceptibility to chemotherapeutic drug, doxorubicin. Also, down-regulation of GLI decreased cyclin D1 and BCL2 transcript levels, which suggests that these key molecules might be regulated by GLI in MCL. Thus, our results indicate a significant role for Shh-GLI signaling in the proliferation of MCL, and molecular targeting of GLI is a potential therapeutic approach to improve the treatment for MCL. [Mol Cancer Ther 2008;7(6):1450–60]</p></div>