The one-fifth rule and its generalizations are a classical parameter control mechanism in discrete domains. They have also been transferred to control the offspring population size of the $(1, \lambda)$-EA. This has been shown to work very well for hill-climbing, and combined with a restart mechanism it was recently shown by Hevia Fajardo and Sudholt to improve performance on the multi-modal problem Cliff drastically. In this work we show that the positive results do not extend to other types of local optima. On the distorted OneMax benchmark, the self-adjusting $(1, \lambda)$-EA is slowed down just as elitist algorithms because self-adaptation prevents the algorithm from escaping from local optima. This makes the self-adaptive algorithm considerably worse than good static parameter choices, which do allow to escape from local optima efficiently. We show this theoretically and complement the result with empirical runtime results.
Optimization problems in dynamic environments have recently been the source of several theoretical studies. One of these problems is the monotonic Dynamic Binary Value problem, which theoretically has high discriminatory power between different Genetic Algorithms. Given this theoretical foundation, we integrate several versions of this problem into the IOHprofiler benchmarking framework. Using this integration, we perform several large-scale benchmarking experiments to both recreate theoretical results on moderate dimensional problems and investigate aspects of GA's performance which have not yet been studied theoretically. Our results highlight some of the many synergies between theory and benchmarking and offer a platform through which further research into dynamic optimization problems can be performed.
It is known that the evolutionary algorithm $(1+1)$-EA with mutation rate $c/n$ optimises every monotone function efficiently if $c<1$, and needs exponential time on some monotone functions (HotTopic functions) if $c\geq 2.2$. We study the same question for a large variety of algorithms, particularly for $(1+\lambda)$-EA, $(\mu+1)$-EA, $(\mu+1)$-GA, their fast counterparts like fast $(1+1)$-EA, and for $(1+(\lambda,\lambda))$-GA. We find that all considered mutation-based algorithms show a similar dichotomy for HotTopic functions, or even for all monotone functions. For the $(1+(\lambda,\lambda))$-GA, this dichotomy is in the parameter $c\gamma$, which is the expected number of bit flips in an individual after mutation and crossover, neglecting selection. For the fast algorithms, the dichotomy is in $m_2/m_1$, where $m_1$ and $m_2$ are the first and second falling moment of the number of bit flips. Surprisingly, the range of efficient parameters is not affected by either population size $\mu$ nor by the offspring population size $\lambda$.
The picture changes completely if crossover is allowed. The genetic algorithms $(\mu+1)$-GA and fast $(\mu+1)$-GA are efficient for arbitrary mutations strengths if $\mu$ is large enough.
Consider the following simple coloring algorithm for a graph on $n$ vertices. Each vertex chooses a color from $\{1, \dotsc, Δ(G) + 1\}$ uniformly at random. While there exists a conflicted vertex choose one such vertex uniformly at random and recolor it with a randomly chosen color. This algorithm was introduced by Bhartia et al. [MOBIHOC'16] for channel selection in WIFI-networks. We show that this algorithm always converges to a proper coloring in expected $O(n \log Δ)$ steps, which is optimal and proves a conjecture of Chakrabarty and Supinski [SOSA'20].
The one-fifth success rule is one of the best-known and most widely accepted techniques to control the parameters of evolutionary algorithms. While it is often applied in the literal sense, a common interpretation sees the one-fifth success rule as a family of success-based updated rules that are determined by an update strength $F$ and a success rate. We analyze in this work how the performance of the (1+1) Evolutionary Algorithm on LeadingOnes depends on these two hyper-parameters. Our main result shows that the best performance is obtained for small update strengths $F=1+o(1)$ and success rate $1/e$. We also prove that the running time obtained by this parameter setting is, apart from lower order terms, the same that is achieved with the best fitness-dependent mutation rate. We show similar results for the resampling variant of the (1+1) Evolutionary Algorithm, which enforces to flip at least one bit per iteration.
For every engineer it goes without saying: in order to build a reliable system we need components that consistently behave precisely as they should. It is also well known that neurons, the building blocks of brains, do not satisfy this constraint. Even neurons of the same type come with huge variances in their properties and these properties also vary over time. Synapses, the connections between neurons, are highly unreliable in forwarding signals. In this paper we argue that both these fact add variance to neuronal processes, and that this variance is not a handicap of neural systems, but that instead predictable and reliable functional behavior of neural systems depends crucially on this variability. In particular, we show that higher variance allows a recurrently connected neural population to react more sensitively to incoming signals, and processes them faster and more energy efficient. This, for example, challenges the general assumption that the intrinsic variability of neurons in the brain is a defect that has to be overcome by synaptic plasticity in the process of learning.
For theoretical analyses there are two specifics distinguishing GP from many other areas of evolutionary computation. First, the variable size representations, in particular yielding a possible bloat (i.e. the growth of individuals with redundant parts). Second, the role and realization of crossover, which is particularly central in GP due to the tree-based representation. Whereas some theoretical work on GP has studied the effects of bloat, crossover had a surprisingly little share in this work. We analyze a simple crossover operator in combination with local search, where a preference for small solutions minimizes bloat (lexicographic parsimony pressure); the resulting algorithm is denoted Concatenation Crossover GP. For this purpose three variants of the well-studied MAJORITY test function with large plateaus are considered. We show that the Concatenation Crossover GP can efficiently optimize these test functions, while local search cannot be efficient for all three variants independent of employing bloat control.