An expedition EMM-Etna to simulate the Lunar and Martian volcanic and soil environment will be carried out at Mount.Etna’s Cratere del Laghetto in Sicily, near Catania Italy by the EuroMoonMars TUDublin and LEAPS ExoMars groups. This scouting campaign intends to train in using instruments to be used on MoonMars landers and rovers, with a perspective of ARCHES DLR telerobotics campaign to be conducted in June 2022, and in preparation for ExoMars rover instruments (PANCAM, CLUPI and spectrometers) science and operations.   Figure 1: Lunar Lander and REMMI Rover for Sample AnalysisThe aim of this EMM-Etna expedition is to investigate and analyse the terrain with the use of different scientific instruments. The topography of the landscape will be photographed using a 360° panoramic camera and drone; it will be processed, and a 3D model developed. The terrain will also be investigated using the REMMI Rover, the abilities of the rover to operate and transport equipment will be monitored. This will further develop the knowledge available of the terrain and help future expeditions to identify different landmarks. The use of a Radio Jove Antenna will permit the team to monitor transmissions from both the Sun and Jupiter. This will allow different cosmic events or changes in the celestial objects to be studied and explored. On site a selection of different samples will also be collected and examined using the REMMI Rover. An Ocean Optics UV-Vis-NIR spectrometer will a be operated  in order to evaluate the existence of biological compounds and substances within these samples and in the area itself. It is key to understand the molecular makeup of one’s surroundings when in an unknown environment. By analysing samples collected, spectroscopy can be used to identify and determine a diagnostic for each substance. This process will be monitored by a Logitech camera to ensure it is carried put correctly. A selection of photographs will be captured of each sample using a portable optical microscope. This will allow an in-depth analysis of the microscopic structure of each collected sample. The use of all of the instruments mentioned above is key in the investigation and research into the Moon and Martian-like volcanic environment that is Mount Etna.We would also like to thank Prof I. Pagano's team from the University of Catania and Dr A.Wedler's team from DLR Deutsches Zentrum für Luft- und Raumfahrt for their support in organising this expedition.
<p>The EuroMoonMars Etna campaign (EMM-Etna) took place on Mt. Etna in Sicily between the 6<sup>th</sup> and 11<sup>th</sup> of July 2021. The scouting campaign was organised by ten students of the International Lunar Exploration Working Group (ILEWG) EuroMoonMars program [1-3] in preparation for the DLR ARCHES (Autonomous Robotic Networks to Help Modern Societies) campaign and the ExoMars launch in 2022. During the ARCHES campaign on Mt. Etna in the summer of 2022, a team of robotics engineers will test various moon landing scenarios to show the capabilities of heterogeneous, autonomous, and interconnected robotic systems [4]. For the EMM-Etna campaign, the team simulated the landing of the REMMI Rover [5] on Mt. Etna as a Mars-analogue site, using a 360-degree remote-controlled camera holder to replicate a panoramic camera. Furthermore, samples were collected and analysed using an Ocean Optics UV-Vis-NIR spectrometer, a Field Raman, and a portable microscope. When working with a team of scientists and engineers the planning and organisation of the campaign are vital. Therefore, every crew member had their distinctive role during the mission, starting from being responsible for individual instruments or the outreach during the campaign to roles such as planner and data officer. Additionally, a mission protocol for the operational steps of the landing of the rover in the volcanic environment was implemented to assure smooth operation in the field.</p><p><span><span>References</span></span>:</p><p>[1]&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160; https://moonbasealliance.com/ilewg</p><p>[2]&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160; https://euromoonmars.space/</p><p>[3] &#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160; H. Reilly et al. "Instruments Operations, Science and Innovation in Expedition Support: EuroMoonMars-Etna campaign 2021", European Planetary Science Congress 2021, online, 13&#8211;24 Sep 2021, EPSC2021-848, https://doi.org/10.5194/epsc2021-848, 2021.</p><p>[4]&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160; M. J. Schuster et al. "The ARCHES Space-Analogue Demonstration Mission: Towards Heterogeneous Teams of Autonomous Robots for Collaborative Scientific Sampling in Planetary Exploration", IEEE Robotics and Automation Letters 5.4 (2020): 5315-5322.</p><p>[5]&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160; C. Mohan et al. "Rover testing for lunar science and innovation", European Planetary Science Congress 2021, online, 13&#8211;24 Sep 2021, EPSC2021-850, https://doi.org/10.5194/epsc2021-850, 2021.</p><p>&#160;</p>
The Atacama Desert and the Puna (an ecoregion of the Central Andes that mainly straddles three South American countries, Argentina, Bolivia and Chile, with altitudes ranging from 3500 to 4800 meters above sea level [masl] see. Figure 1) have extreme terrestrial environmental characteristics that make these two geographic locations potential analogs of the conditions that Mars may have experienced during its geological history [1,2].Figure 1 : Geographical landmark / Bottom left, Zoom in on the campaign area with sampling points present (Copyright : Google Earth)The University of Atacama (UDA) located in Copiapo (27º37S / 70º33W) in Chile, aims to conduct multidisciplinary studies to better characterize the extreme environment of the Puna de Atacama. This project is based, in particular, on the forthcoming implementation of a high-altitude laboratory located at 3800 masl in the vicinity of the Salar de Maricunga (26º92S / 69º08W) [3]. The construction of this high-altitude laboratory should enable the scientific exploration of the region to be strengthened. Moreover, in order to benefit from expertise in the field of planetary analogs, the UDA has approached the EuroMoonMars program [4], which has more than ten years of experience in organizing analog field campaigns. This partnership in the making has taken shape with the setting-up of a first joint expedition at the end of February/beginning of March 2021. This expedition was organized by the Cryosphere and Water laboratory of the UDA (LICA) and has also been supported remotely by members of the EuroMoonMars program. During this high-altitude 10-days campaign (between 3800 and 6500 masl) the geographical extend included the Salar de Maricunga (26º92S / 69º08W), the Tres Cruces (27º07S / 68º79W), the Laguna Verde (28º88S / 68º47W) and finally the Ojos del Salado areas (27º11S / 68º54W) (see. Figure 1), whose potential as a Martian analog has been highlighted in recent publications [5]. To the initial objectives related to environmental sciences, scientific, technical, logistical and medical protocols specific to planetary science and space exploration were added, as the first steps towards for the organization of more complex campaigns involving EuroMoonMars people in the field. According to the multidisciplinary perspective of characterizing the environment of the Puna de Atacama and in addition to geophysical work, soil, water and biological material sampling was carried out along an altitudinal gradient (see. Figure 1). This study aims to review the preliminary results of these samples, notably via the geochemical analysis of the soils (carried out using Inductively Couple Plasma spectrometry (ICP) and X-fluorescence spectroscopy) contextualized in the perspective of considering the Puna de Atacama as a Martian analog.  Acknowledgments: The authors would like to thank the people involved in the success of this project, which aims to both promote and protect the incredible natural heritage of the Puna de Atacama region.  References: [1] Navarro-González, R. et al. (2003) Science, 302(5647), 1018-1021. [2] Schmidt, S. K. et al. Antonie van Leeuwenhoek, 111(8), 1389-1401. [3] Tavernier, A. et al. (2021) 52nd LPSC conference 15-19 March, 2021. LPI Contribution No. 2548, id.2253.[4] Foing, B. et al. (2020) p. EPSC2020-14. [5] Kereszturi, Á. et al. (2020) Astrobiology, 20(6),677-683.