Background Time consuming computational assembly and quantification of gene expression and splicing analysis from RNA-seq data vary considerably. Recent fast non-alignment tools such as Kallisto and Salmon overcome these problems, but these tools require a high quality, comprehensive reference transcripts dataset (RTD), which are rarely available in plants. Results A high-quality, non-redundant barley gene RTD and database (Barley Reference Transcripts – BaRTv1.0) has been generated. BaRTv1.0, was constructed from a range of tissues, cultivars and abiotic treatments and transcripts assembled and aligned to the barley cv. Morex reference genome (Mascher et al., 2017). Full-length cDNAs from the barley variety Haruna nijo (Matsumoto et al., 2011) determined transcript coverage, and high-resolution RT-PCR validated alternatively spliced (AS) transcripts of 86 genes in five different organs and tissue. These methods were used as benchmarks to select an optimal barley RTD. BaRTv1.0-Quantification of Alternatively Spliced Isoforms (QUASI) was also made to overcome inaccurate quantification due to variation in 5’ and 3’ UTR ends of transcripts. BaRTv1.0-QUASI was used for accurate transcript quantification of RNA-seq data of five barley organs/tissues. This analysis identified 20,972 significant differentially expressed genes, 2,791 differentially alternatively spliced genes and 2,768 transcripts with differential transcript usage. Conclusion A high confidence barley reference transcript dataset consisting of 60,444 genes with 177,240 transcripts has been generated. Compared to current barley transcripts, BaRTv1.0 transcripts are generally longer, have less fragmentation and improved gene models that are well supported by splice junction reads. Precise transcript quantification using BaRTv1.0 allows routine analysis of gene expression and AS.
Background Time consuming computational assembly and quantification of gene expression and splicing analysis from RNA-seq data vary considerably. Recent fast non-alignment tools such as Kallisto and Salmon overcome these problems, but these tools require a high quality, comprehensive reference transcripts dataset (RTD), which are rarely available in plants. Results A high-quality, non-redundant barley gene RTD and database (Barley Reference Transcripts – BaRTv1.0) has been generated. BaRTv1.0, was constructed from a range of tissues, cultivars and abiotic treatments and transcripts assembled and aligned to the barley cv. Morex reference genome (Mascher et al., 2017). Full-length cDNAs from the barley variety Haruna nijo (Matsumoto et al., 2011) determined transcript coverage, and high-resolution RT-PCR validated alternatively spliced (AS) transcripts of 86 genes in five different organs and tissue. These methods were used as benchmarks to select an optimal barley RTD. BaRTv1.0-Quantification of Alternatively Spliced Isoforms (QUASI) was also made to overcome inaccurate quantification due to variation in 5’ and 3’ UTR ends of transcripts. BaRTv1.0-QUASI was used for accurate transcript quantification of RNA-seq data of five barley organs/tissues. This analysis identified 20,972 significant differentially expressed genes, 2,791 differentially alternatively spliced genes and 2,768 transcripts with differential transcript usage. Conclusion A high confidence barley reference transcript dataset consisting of 60,444 genes with 177,240 transcripts has been generated. Compared to current barley transcripts, BaRTv1.0 transcripts are generally longer, have less fragmentation and improved gene models that are well supported by splice junction reads. Precise transcript quantification using BaRTv1.0 allows routine analysis of gene expression and AS.
ABSTRACT In flowering plants, successful germinal cell development and meiotic recombination depend upon a combination of environmental and genetic factors. To gain insights into this specialised reproductive development programme we used short- and long-read RNA-sequencing (RNA-seq) to study the temporal dynamics of transcript abundance in immuno-cytologically staged barley ( Hordeum vulgare ) anthers and meiocytes. We show that the most significant transcriptional changes occur at the transition from pre-meiosis to leptotene–zygotene, which is followed by largely stable transcript abundance throughout prophase I. Our analysis reveals that the developing anthers and meiocytes are enriched in long non-coding RNAs (lncRNAs) and that entry to meiosis is characterized by their robust and significant down regulation. Intriguingly, only 24% of a collection of putative meiotic gene orthologues showed differential transcript abundance in at least one stage or tissue comparison. Changes in the abundance of numerous transcription factors, representatives of the small RNA processing machinery, and post-translational modification pathways highlight the complexity of the regulatory networks involved. These developmental, time-resolved, and dynamic transcriptomes increase our understanding of anther and meiocyte development and will help guide future research. One sentence summary Analysis of RNA-seq data from meiotically staged barley anthers and meiocytes highlights the role of lncRNAs within a complex network of transcriptional and post-transcriptional regulation accompanied by a hiatus in differential gene expression during prophase I. The author responsible for distribution of materials integral to the findings presented in this article in accordance with the policy described in the Instructions for Authors ( www.plantcell.org ) is: Robbie Waugh ( robbie.waugh@hutton.ac.uk )
Cell wall resistance represents the main barrier for the production of second generation biofuels. The deconstruction of lignocellulose can provide sugars for the production of fuels or other industrial products through fermentation. Understanding the biochemical basis of the recalcitrance of cell walls to digestion will allow development of more effective and cost efficient ways to produce sugars from biomass. One approach is to identify plant genes that play a role in biomass recalcitrance, using association genetics. Such an approach requires a robust and reliable high throughput (HT) assay for biomass digestibility, which can be used to screen the large numbers of samples involved in such studies.We developed a HT saccharification assay based on a robotic platform that can carry out in a 96-well plate format the enzymatic digestion and quantification of the released sugars. The handling of the biomass powder for weighing and formatting into 96 wells is performed by a robotic station, where the plant material is ground, delivered to the desired well in the plates and weighed with a precision of 0.1 mg. Once the plates are loaded, an automated liquid handling platform delivers an optional mild pretreatment (< 100°C) followed by enzymatic hydrolysis of the biomass. Aliquots from the hydrolysis are then analyzed for the release of reducing sugar equivalents. The same platform can be used for the comparative evaluation of different enzymes and enzyme cocktails. The sensitivity and reliability of the platform was evaluated by measuring the saccharification of stems from lignin modified tobacco plants, and the results of automated and manual analyses compared.The automated assay systems are sensitive, robust and reliable. The system can reliably detect differences in the saccharification of plant tissues, and is able to process large number of samples with a minimum amount of human intervention. The automated system uncovered significant increases in the digestibility of certain lignin modified lines in a manner compatible with known effects of lignin modification on cell wall properties. We conclude that this automated assay platform is of sufficient sensitivity and reliability to undertake the screening of the large populations of plants necessary for mutant identification and genetic association studies.
Caffeic acid O-methyltransferase (COMT), the lignin biosynthesis gene modified in many brown-midrib high-digestibility mutants of maize and sorghum, was targeted for downregulation in the small grain temperate cereal, barley (Hordeum vulgare), to improve straw properties. Phylogenetic and expression analyses identified the barley COMT orthologue(s) expressed in stems, defining a larger gene family than in brachypodium or rice with three COMT genes expressed in lignifying tissues. RNAi significantly reduced stem COMT protein and enzyme activity, and modestly reduced stem lignin content while dramatically changing lignin structure. Lignin syringyl-to-guaiacyl ratio was reduced by ~50%, the 5-hydroxyguaiacyl (5-OH-G) unit incorporated into lignin at 10--15-fold higher levels than normal, and the amount of p-coumaric acid ester-linked to cell walls was reduced by ~50%. No brown-midrib phenotype was observed in any RNAi line despite significant COMT suppression and altered lignin. The novel COMT gene family structure in barley highlights the dynamic nature of grass genomes. Redundancy in barley COMTs may explain the absence of brown-midrib mutants in barley and wheat. The barley COMT RNAi lines nevertheless have the potential to be exploited for bioenergy applications and as animal feed.
Abstract During meiosis, genetic recombination occurs via repair of DNA double-strand breaks (DSBs) as crossovers (COs) resulting in the exchange of parental genetic material (1). Crossovers are important for chromosome segregation and shuffling genetic variation, but their number and distribution are tightly regulated (2). In barley and other large genome cereals, recombination events are limited in number and mainly restricted to the ends of chromosomes (3), constraining progress in plant breeding. Recent studies have highlighted subtle differences in meiotic progression (4, 5) and the distribution of recombination events in barley compared to other plants (6-8), indicating possible evolutionary divergence of the meiotic program in large genome crops. Here we identify a spontaneous loss of function mutation in the grass specific E3 ubiquitin ligase HvST1 ( Sticky Telomeres 1 ) which results in semi-sterility in barley. We show that abnormal synapsis in the absence of HvST1 function increases overall recombination by up to 2.5-fold and that HvST1 is capable of ubiquitinating ASY1, a key component of the lateral elements of the synaptonemal complex. Our findings shed light on a novel—and evolutionarily divergent—pathway regulating synapsis and recombination in cereals. This natural loss of function variant presents new opportunities for the modulation of recombination in large genome cereals. Significance Statement Climate change places significant strain on crop production. Crop secondary gene pools offer an excellent resource for crop improvement. However, linkage drag driven by restrictions to meiotic recombination can impose severe yield or quality penalties from introgression of traits from secondary gene pools to elite varieties. Here, we characterize a spontaneous mutation in the barley E3 ubiquitin HvST1 that leads to a significant increase in recombination. Through biochemical analysis of the wild type protein we identified a putative role for this ligase in regulating synapsis. This furthers our understanding of the control of synapsis in large genome cereals and may be of direct use in traditional barley breeding.
The time required to analyse RNA-seq data varies considerably, due to discrete steps for computational assembly, quantification of gene expression and splicing analysis. Recent fast non-alignment tools such as Kallisto and Salmon overcome these problems, but these tools require a high quality, comprehensive reference transcripts dataset (RTD), which are rarely available in plants.A high-quality, non-redundant barley gene RTD and database (Barley Reference Transcripts - BaRTv1.0) has been generated. BaRTv1.0, was constructed from a range of tissues, cultivars and abiotic treatments and transcripts assembled and aligned to the barley cv. Morex reference genome (Mascher et al. Nature; 544: 427-433, 2017). Full-length cDNAs from the barley variety Haruna nijo (Matsumoto et al. Plant Physiol; 156: 20-28, 2011) determined transcript coverage, and high-resolution RT-PCR validated alternatively spliced (AS) transcripts of 86 genes in five different organs and tissue. These methods were used as benchmarks to select an optimal barley RTD. BaRTv1.0-Quantification of Alternatively Spliced Isoforms (QUASI) was also made to overcome inaccurate quantification due to variation in 5' and 3' UTR ends of transcripts. BaRTv1.0-QUASI was used for accurate transcript quantification of RNA-seq data of five barley organs/tissues. This analysis identified 20,972 significant differentially expressed genes, 2791 differentially alternatively spliced genes and 2768 transcripts with differential transcript usage.A high confidence barley reference transcript dataset consisting of 60,444 genes with 177,240 transcripts has been generated. Compared to current barley transcripts, BaRTv1.0 transcripts are generally longer, have less fragmentation and improved gene models that are well supported by splice junction reads. Precise transcript quantification using BaRTv1.0 allows routine analysis of gene expression and AS.
Despite conservation of the process of meiosis, recombination landscapes vary between species, with large genome grasses such as barley (Hordeum vulgare L.) exhibiting a pattern of recombination that is very heavily skewed to the ends of chromosomes. We have been using a collection of semi-sterile desynaptic meiotic mutant lines to help elucidate how recombination is controlled in barley and the role of the corresponding wild-type (WT) meiotic genes within this process. Here we applied a combination of genetic segregation analysis, cytogenetics, and immunocytology to genetically map and characterize the meiotic mutant desynaptic5 (des5). We identified an exonic insertion in the positional candidate ortholog of Disrupted Meiotic cDNA 1 (HvDMC1) on chromosome 5H of des5. des5 exhibits a severe meiotic phenotype with disturbed synapsis, reduced crossovers, and chromosome mis-segregation. The meiotic phenotype and reduced fertility of des5 is similarly observed in Hvdmc1RNAi transgenic plants and HvDMC1p:GusPlus reporter lines show DMC1 expression specifically in the developing inflorescence. The des5 mutation maintains the reading frame of the gene and exhibits semi-dominance with respect to recombination in the heterozygote indicating the value of non-knockout mutations for dissection of the control of recombination in the early stages of meiosis.
In flowering plants, successful germinal cell development and meiotic recombination depend upon a combination of environmental and genetic factors. To gain insights into this specialized reproductive development program we used short- and long-read RNA-sequencing (RNA-seq) to study the temporal dynamics of transcript abundance in immuno-cytologically staged barley ( Hordeum vulgare ) anthers and meiocytes. We show that the most significant transcriptional changes in anthers occur at the transition from pre-meiosis to leptotene–zygotene, which is followed by increasingly stable transcript abundance throughout prophase I into metaphase I–tetrad. Our analysis reveals that the pre-meiotic anthers are enriched in long non-coding RNAs (lncRNAs) and that entry to meiosis is characterized by their robust and significant down regulation. Intriguingly, only 24% of a collection of putative meiotic gene orthologs showed differential transcript abundance in at least one stage or tissue comparison. Argonautes, E3 ubiquitin ligases, and lys48 specific de-ubiquitinating enzymes were enriched in prophase I meiocyte samples. These developmental, time-resolved transcriptomes demonstrate remarkable stability in transcript abundance in meiocytes throughout prophase I after the initial and substantial reprogramming at meiosis entry and the complexity of the regulatory networks involved in early meiotic processes.