Obesity is a growing health problem that many countries face, mostly due to the consumption of a Westernized diet. In this present study we observed the effects of a soybean extract fermented by Bacillus subtilis MORI (BTD-1) containing 1-deoxynojirimycin against high fat diet-induced obesity. The results obtained from this study indicated that BTD-1 reduced body weight, regulated hepatic lipid content and adipose tissue, and also affected liver antioxidant enzymes and glucose metabolism. These results suggest that administration of BTD-1 affects obesity by inhibiting hyperglycemia and free radical-mediated stress; it also reduces lipid accumulation. Therefore, BTD-1 may be potentially useful for the prevention of obesity and its related secondary complications.
Piper attenuatum is used as a traditional medicinal plant in India. One of the substances in P. attenuatum has been suggested to have anti-inflammatory effects. However, there is insufficient research about the anti-inflammatory mechanisms of action of P. attenuatum. The effects of P. attenuatum methanol extract (Pa-ME) on the production of inflammatory mediators nitric oxide (NO) and prostaglandin E2 (PGE2), the expression of proinflammatory genes, the translocation level of transcription factors, and intracellular signaling activities were investigated using macrophages. Pa-ME suppressed the production of NO and PGE2 in lipopolysaccharide- (LPS-), pam3CSK4-, and poly(I:C)-stimulated RAW264.7 cells without displaying cytotoxicity. The mRNA expression levels of inducible NO synthase (iNOS) and cyclooxygenase 2 (COX-2) were decreased by Pa-ME. P-ME reduced the translocation of p50/NF-κB and AP-1 (c-Jun and c-Fos), as well as the activity of their upstream enzymes Src, Syk, and TAK1. Immunoprecipitation analysis showed failure of binding between their substrates, phospho- (p-) p85 and p-MKK3/6. p-p85 and p-MKK3/6, which were induced by overexpression of Src, Syk, and TAK1, were also reduced by Pa-ME. Therefore, these results suggest that Pa-ME exerts its anti-inflammatory effects by targeting Src and Syk in the NF-κB signaling pathway and TAK1 in the AP-1 signaling pathway.
Abstract Thymoquinone (TQ) is a bioactive component of black seed ( Nigella sativa ) volatile oil and has been shown to have anti-oxidative, anti-inflammatory, and anti-cancer properties. In the present study, we explored the molecular mechanisms that underlie the anti-inflammatory effect of TQ and its target proteins using lipopolysaccharide (LPS)-stimulated murine macrophage-like RAW264.7 and human monocyte-like U937 cells, together with LPS/D-galactosamine (GalN)-induced acute hepatitis and HCl/EtOH-induced gastritis mouse models. TQ strongly inhibited the production of nitric oxide (NO) and repressed NO synthase (iNOS), tumor necrosis factor (TNF)-α, cyclooxygenase (COX)−2, interleukin (IL)−6, and IL-1β expression in LPS-activated RAW264.7 cells. Treatment of LPS/D-GalN–induced hepatitis and EtOH/HCl–induced gastritis mouse models with TQ significantly ameliorated disease symptoms. Using luciferase reporter gene assays, we also showed that the nuclear levels of transcription factors and phosphorylation patterns of signaling proteins, activator protein (AP)−1, and nuclear factor (NF)-κB pathways were all affected by TQ treatment. Finally, we used additional kinase and luciferase validation assays with interleukin-1 receptor-associated kinase 1 (IRAK1) to show that IRAK1 is directly suppressed by TQ treatment. Together, these findings strongly suggest that the anti-inflammatory actions of TQ are caused by suppression of IRAK-linked AP-1/NF-κB pathways.
Korean Red Ginseng (KRG) is an herbal oriental medicine known to alleviate cardiovascular dysfunction. To analysis the expression of diabetic cardiac complication-associated genes in db/db mice, we studied the cardiac gene expression following KRG treatment. In result, a total of 585 genes were found to be changed in db/db mice. Among the changed expression, 245 genes were found to 2-fold upregulated, and 340 genes were 2-fold downregulated. In addition, the changed gene expressions were ameliorated by KRG. In conclusion, KRG may be possible to normalize cardiac gene expressions in db/db mice.
Progressive aging harms bone tissue structure and function and, thus, requires effective therapies focusing on permanent tissue regeneration rather than partial cure, beginning with regenerative medicine. Due to advances in tissue engineering, stimulating osteogenesis with biomimetic nanoparticles to create a regenerative niche has gained attention for its efficacy and cost-effectiveness. In particular, hydroxyapatite (HAP, Ca10(PO4)6(OH)2) has gained significant interest in orthopedic applications as a major inorganic mineral of native bone. Recently, magnetic nanoparticles (MNPs) have also been noted for their multifunctional potential for hyperthermia, MRI contrast agents, drug delivery, and mechanosensitive receptor manipulation to induce cell differentiation, etc. Thus, the present study synthesizes HAP-decorated MNPs (MHAP NPs) via the wet chemical co-precipitation method. Synthesized MHAP NPs were evaluated against the preosteoblast MC3T3-E1 cells towards concentration-dependent cytotoxicity, proliferation, morphology staining, ROS generation, and osteogenic differentiation. The result evidenced that MHAP NPs concentration up to 10 µg/mL was non-toxic even with the time-dependent proliferation studies. As nanoparticle concentration increased, FACS apoptosis assay and ROS data showed a significant rise in apoptosis and ROS generation. The MC3T3-E1 cells cocultured with 5 µg/mL MHAP NPs showed significant osteogenic differentiation potential. Thus, MHAP NPs synthesized with simple wet chemistry could be employed in bone regenerative therapy.
// Mi Seon Kim 1, * , Byong Chul Yoo 2, * , Woo Seok Yang 1, * , Sang Yun Han 1 , Deok Jeong 1 , Jun Min Song 3 , Kyung Hee Kim 2 , Adithan Aravinthan 4 , Ji Hye Kim 1 , Jong-Hoon Kim 4 , Seung Cheol Kim 5 and Jae Youl Cho 1 1 Department of Genetic Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea 2 Colorectal Cancer Branch, Research Institute, National Cancer Center, Goyang 10408, Republic of Korea 3 School of Medicine, Keimyung University, Daegu 42601, Republic of Korea 4 Department of Physiology, College of Veterinary Medicine, Chonbuk National University, Iksan 54596, Republic of Korea 5 Department of Obstetrics and Gynecology, Ewha Womans University Mokdong Hospital, Ewha Womans University School of Medicine, Seoul 07985, Republic of Korea * These authors contributed equally to this work Correspondence to: Jong-Hoon Kim, email: jhkim1@chonbuk.ac.kr Seung Cheol Kim, email: onco@ewha.ac.kr Jae Youl Cho, email: jaecho@skku.edur Keywords: aripiprazole; antipsychotic drug; antitumor activity; apoptosis; Src Received: September 19, 2017 Accepted: December 01, 2017 Published: December 08, 2017 ABSTRACT Aripiprazole (ARP) is an atypical anti-psychotic drug widely used to treat schizophrenia and bipolar disorder. The pharmacological effects of ARP on cancer cells are still poorly understood. In this study, anti-cancer effects of ARP on various malignant tumor cells and its molecular mechanism were further carefully examined by using cell proliferation assay, xenograft mouse model, immunoblotting analysis, migration assay, luciferase reporter gene assay, kinase assay, and overexpression strategy. Treatment with ARP induced cytotoxicity in U251 glioma cells, MKN-1 gastric adenosquamous carcinoma cells, and CT26 colon carcinoma cells. ARP suppressed cell proliferation of LN428, MDA-MB-231, and HEK293 cells. Pro-apoptotic factors active caspase-3, -8, and -9, as well as p53, were upregulated, whereas the protein and mRNA levels of anti-apoptotic factor B-cell lymphoma 2 (Bcl-2) decreased. In agreement with the in vitro results, ARP compound also significantly suppressed the growth of tumor masses formed by injecting CT26 colon cancer cells into mice. ARP treatment also effectively decreased the migratory ability of U251 glioma cells by downregulating metalloproteinase-9. Levels of phosphorylated Src, phosphorylated phosphatidylinositide 3-kinase (PI3K), and phosphorylated signal transducer and activator of transcription 3 (STAT3) were significantly decreased following ARP treatment. ARP compound reduced the kinase activity of Src. Our studies suggest that Src may be an important target molecule linked to the antitumor effects of ARP.
In search of immunomodulatory agents, natural products play a vital role since they have relatively low toxicity in clinical applications. Korean red ginseng (KRG) has been used in Korea, Japan, and china as a traditional medicine. KRG has proven for its efficacy against various human diseases such as cancer, diabetes, and atherosclerosis.
Methods
In this study, KRG was assessed for its ability to act as an adjuvant for the immune response of porcine splenocytes. The porcines were administered with different concentrations (200 and 400 mg/kg/day) of KRG, orally for 28 days.
Results
The splenocytes isolated from KRG treated group showed enhanced immune response in a concentration dependent manner when compared to untreated porcine splenocytes. Further, the intracellular levels of perforin, Granzyme B and NKG2D were found to be significantly increased in transcriptional and translational level as revealed by RT-PCR and western blot analysis respectively. In addition, we compared the cytotoxic ability of splenocytes treated with KRG against K-562 cell for 28 days. The KRG activated porcine splenocytes (effector) were incubated with K-562 (target) in a ratio of 100:1 for 4 hour once a week until the end of the experiment.
Conclusions
The splenocytes from KRG treated porcine showed a significantly increased cytotoxicity in time dependent fashion. Whereas, splenocytes from untreated porcine showed a less toxicity. Taken together, KRG has the potential to modulate immune function and should be further investigated as an immunomodulatory agent.
Ginsenoside Rb1 (G-Rb1), one of the major active compounds in Panax ginseng, has already been shown to reduce inflammation in various diseases. Osteoarthritis (OA) has traditionally been considered a degenerative disease with degradation of joint articular cartilage. However, recent studies have shown the association of inflammation with OA. In the present study, we investigated whether Rb1 had an antiinflammatory effect on monoiodoacetate (MIA)-induced OA in ovariectomized rats as a model of postmenopausal arthritis.G-Rb1 at a dosage of 3 and 10 μg/kg body weight was administered every 3 days intraarticularly for a period of 4 weeks to observe antiarthritic effects. Diclofenac (10 mg/kg) served as a positive control.The administration of Rb1 significantly ameliorated OA inflammatory symptoms and reduced serum levels of inflammatory cytokines. Furthermore, G-Rb1 administration considerably enhanced the expression of bone morphogenetic protein-2 and collagen 2A and reduced the levels of matrix metalloproteinase-13 genes, indicating a chondroprotective effect of G-Rb1. G-Rb1 also significantly reduced the expression of several inflammatory cytokines/chemokines (interferon gamma (IFN-γ), monocyte chemoattractant protein-1 (MCP-1)/CCL-2, interleukin [IL]-1β, and IL-6). Histological analysis demonstrated that G-Rb1 significantly attenuated the pathological changes in MIA-induced OA in ovariectomized rats. Safranin O and toluidine blue staining further demonstrated that G-Rb1 effectively prevented the degradation of cartilage and glycosaminoglycans, respectively.Overall, our results suggest that G-Rb1 exerts cartilage protective effect on MIA-induced ovariectomized OA rats, by inhibiting inflammatory mediators such as IL-6, IL-1β, MCP-1/CCL-2, cyclooxygenase-2 (COX-2), and prostaglandin E2 (PGE2). These results shed a light on possible therapeutic application of G-Rb1 in OA.