Existing research provides conflicting evidence regarding the relationship between estimated branched-chain amino acid (BCAA) intake and metabolic, glycemic markers, and anthropometric characteristics. This research seeks to examine the association between estimated dietary BCAA consumption and glycemic, and metabolic markers, as well as anthropometric parameters in adults classified as overweight or obese.In this cross-sectional analysis, we gathered data from 465 overweight and obese individuals aged between 18 and 37 years. To evaluate dietary data, we employed the food frequency questionnaire, and the BCAA content in foods was determined via the United States Department of Agriculture website. We utilized ELISA kits to measure fasting blood glucose (FBS) and lipid profile markers, and additionally calculated low-density lipoprotein (LDL) and insulin sensitivity markers. We assessed sociodemographic status, physical activity (PA), and anthropometric attributes through a method recognized as both valid and reliable. For statistical analysis, we conducted analyses of covariance (ANCOVA), making adjustments for variables including sex, PA, age, energy, and body mass index (BMI).Upon adjusting for confounders, those in the highest tertiles of BCAA intake exhibited an increase in weight, BMI, waist circumference (WC), waist-to-hip ratio (WHR), and fat-free mass (FFM). Conversely, they demonstrated reduced fat mass (FM) (%) and FM (kg) compared to their counterparts in the lowest tertiles (P < 0.05). Additionally, there was a noted association between greater estimated BCAA intake and reduced LDL levels. Nonetheless, our findings did not reveal a significant relationship between dietary BCAA and glycemic indices.From our findings, an increased estimated intake of BCAA seems to correlate with diminished serum LDL concentrations. To gain a more comprehensive understanding of this association, it is imperative that further experimental and longitudinal studies be conducted.
Abstract Background There is conflicting evidence on the relationship between dietary choline and betaine with metabolic markers and anthropometric characteristics. The aim of this study is to investigate the relationship between the interaction effects of dietary choline and betaine and physical activity (PA) on circulating creatine kinase (CK), metabolic and glycemic markers, and anthropometric characteristics in active youth. Methods In this cross-sectional study, data were collected from 120 to 18 to 35-year-old people. The food frequency questionnaire was used to assess dietary data; United States Department of Agriculture website was used to calculate choline and betaine in foods. CK, fasting blood sugar (FBS) and lipid profile markers were measured with ELISA kits. Low-density lipoprotein, and insulin sensitivity markers were calculated. Sociodemographic status, physical activity, and anthropometric characteristics were assessed based on a valid and reliable method. Analysis of co-variance (ANCOVA) tests adjusted for sex, PA, age, energy, and body mass index were used. Results Increasing dietary betaine and total choline and betaine was positively related to weight, waist-to-hip ratio, fat-free mass and bone mass ( P < 0.05). Increasing dietary betaine lowered total cholesterol ( P = 0.032) and increased high density lipoprotein (HDL) ( P = 0.049). The interaction effect of dietary choline and physical activity improved insulin resistance ( P < 0.05). As well as dietary betaine interacted with physical activity increased HDL ( P = 0.049). In addition, dietary total choline and betaine interacted with physical activity decreased FBS ( P = 0.047). Conclusions In general, increasing dietary choline and betaine along with moderate and high physical activity improved insulin resistance, increased HDL, and lowered FBS in the higher tertiles of dietary choline and betaine.
Background: Various studies have shown an inverse relationship between the quality of protein intake based on essential amino acids (EAAs) with obesity and its complications. We assumed that increasing EAAs-based protein intake quality improves glycemic and metabolic markers and anthropometric measurements in obese and overweight people. Methods: This cross-sectional study included 180 obese and overweight participants aged 18 to 35. Dietary information was obtained using an 80-item food frequency questionnaire. The total intake of EAAs was calculated using the United States department of agriculture (USDA) database. Quality protein was defined as the ratio of EAAs (gr) to total dietary protein (gr). Sociodemographic status, physical activity (PA), and anthropometric characteristics were evaluated using a valid and reliable method. Analysis of covariance (ANCOVA) tests adjusted for sex, PA, age, energy, and body mass index (BMI) were used to measure this association. Results: Protein quality intake was highest among the group with the lowest weight, body mass index (BMI), waist circumference (WC), hip circumference (HC), waist-to-hip ratio (WHR), and fat mass (FM); and on the other hand, the fat-free mass (FFM) has increased; also Increasing the quality of protein intake improved the lipid profile and some glycemic indices and insulin sensitivity, although this association was not significant. Conclusions: Increasing the quality of protein intake significantly improved anthropometric measurements, and also improved some glycemic and metabolic indices although, their relationship was not significant.
Adolescence is a critical period in human life, associated with reduced physical activity and increased sedentary behaviors. In this systematic review and dose-response meta-analysis, we evaluated the association between screen time and risk of overweight/obesity among adolescents.