Actin disruption by CytochalasinD (CytD) and LatrunculinB (LatB) induced NF-kappaB activation in myelomonocytic and intestinal epithelial cells. In an attempt to elucidate the mechanism by which actin disruption induced IKK activation, we studied the human Nod2 protein, which was able to induce NF-kappaB activation and whose expression was restricted to myelomonocytic and intestinal epithelial cells. Nod2 is thought to play key roles in pathogen defence through sensing bacteria and generating an inflammatory immune response. We showed that actin disruption by CytD significantly and specifically increased Nod2-mediated NF-kappaB signaling. Nod2 was fully partitioned in the Triton-X-100-insoluble fraction but translocated into the soluble fraction after CytD treatment, demonstrating that the presence of Nod2 in the detergent-insoluble pellet was specific to actin cytoskeleton. Confocal analysis also revealed a Nod2 colocalization with membrane-associated F-actin. Colocalization and co-immunoprecipitation assays with endogenous Rac1 have shown that Nod2 associated with activated Rac1 in membrane ruffles through both its N-terminal caspase recruitment domains (CARD) and C-terminal leucine-rich repeats (LRRs). Membrane ruffle disruption by a Rac1 dominant negative form primed Nod2-dependent NF-kappaB signaling. The recruitment of Nod2 in Rac-induced dynamic cytoskeletal structures could be a strategy to both repress the Nod2-dependent NF-kappaB signaling in unstimulated cells and rapidly mobilize Nod2 during bacterial infection.
Transcription of human immunodeficiency virus type 1 (HIV-1) is regulated by cis-acting DNA elements located in the viral long terminal repeats, by viral transregulatory proteins, and by cellular transcription factors acting in concert to modulate the degree of viral expression. We demonstrate that a DNA fragment corresponding to the central portion of the HIV-1 genome exhibits enhancer activity when cloned upstream of the thymidine kinase promoter of herpes simplex virus. This enhancer is inducible by phorbol 12-myristate 13-acetate in HeLa cells and is independent of its position and orientation with respect to the promoter. We have mapped the activity of the enhancer to two independent domains encompassing nucleotides 4079-4342 (end of the pol gene) and nucleotides 4781-6026 (vif gene and first coding exon of tat). This intragenic enhancer and its subdomains demonstrate cellular specificity because they are only active in specific cell lines. The presence of similar intragenic enhancer elements in other retroviruses suggests that they might be a conserved feature of this family of viruses.
The trophoblastic cell represents the main functional unit of the placenta. It proliferates, migrates, and invades the maternal tissue in a way that is similar to malignant tumors. Nevertheless, these processes are tightly controlled by stringent spatial and temporal confines. Therefore, the trophoblastic cell, as 'a well-behaved tumor', represents an ideal model system to investigate several oncogenic processes. Several studies reported that HPV viruses could infect trophoblasts during pregnancies. Surprisingly, HPV can replicate in vitro in trophoblasts. Higher HPV infection frequency has been reported to be associated with some spontaneous abortion and gestational trophoblastic diseases.
Human T-cell Leukemia Viruses (HTLVs) are complex human retroviruses of the Deltaretrovirus genus. Four types have been identified thus far, with HTLV-1 and HTLV-2 much more prevalent than HTLV-3 or -4 . HTLV-1 and HTLV-2 possess strictly related genomic structures, but differ significantly in pathogenicity, as HTLV-1 is the causative agent of adult T-cell leukemia (ATL) and of HTLV associated myelopathy/tropical spastic paraparesis (HAM/TSP), whereas HTLV-2 is not associated with neoplasia. HTLVs code for a protein named Tax that is responsible for enhancing viral expression and drives cell transformation. Much effort has been invested to dissect the impact of Tax on signal transduction pathways and to identify functional differences between the HTLV Tax proteins that may explain the distinct oncogenic potential of HTLV-1 and HTLV-2. This review summarizes our current knowledge of Tax-1 and Tax-2 with emphasis on their structure, role in activation of the NF-kB pathway, and interactions with host factors.