Context. The next generation of space-based observatories will characterize the atmospheres of low-mass, temperate exoplanets with the direct-imaging technique. This will be a major step forward in our understanding of exoplanet diversity and the prevalence of potentially habitable conditions beyond the Earth. Aims. We compute a list of currently known exoplanets detectable with the mid-infrared Large Interferometer For Exoplanets (LIFE) in thermal emission. We also compute the list of known exoplanets accessible to a notional design of the future Habitable Worlds Observatory (HWO), observing in reflected starlight. Methods. With a pre-existing statistical methodology, we processed the NASA Exoplanet Archive and computed orbital realizations for each known exoplanet. We derived their mass, radius, equilibrium temperature, and planet-star angular separation. We used the LIFEsim simulator to compute the integration time ( t int ) required to detect each planet with LIFE. A planet is considered detectable if a broadband signal-to-noise ratio S / N = 7 is achieved over the spectral range 4–18.5 µm in t int < 100 h. We tested whether the planet is accessible to HWO in reflected starlight based on its notional inner and outer working angles, and minimum planet-to-star contrast. Results. LIFE's reference configuration (four 2-m telescopes with 5% throughput and a nulling baseline between 10–100 m) can detect 212 known exoplanets within 20 pc. Of these, 49 are also accessible to HWO in reflected starlight, offering a unique opportunity for synergies in atmospheric characterization. LIFE can also detect 32 known transiting exoplanets. Furthermore, we find 38 LIFE-detectable planets orbiting in the habitable zone, of which 13 have M p < 5 M ⊕ and eight have 5 M ⊕ < M p < 10 M ⊕ . Conclusions. LIFE already has enough targets to perform ground-breaking analyses of low-mass, habitable-zone exoplanets, a fraction of which will also be accessible to other instruments.
The increased brightness temperature of young rocky protoplanets during their magma ocean epoch makes them potentially amenable to atmospheric characterization to distances from the solar system far greater than thermally equilibrated terrestrial exoplanets, offering observational opportunities for unique insights into the origin of secondary atmospheres and the near surface conditions of prebiotic environments. The Large Interferometer For Exoplanets (LIFE) mission will employ a space-based mid-infrared nulling interferometer to directly measure the thermal emission of terrestrial exoplanets. Here, we seek to assess the capabilities of various instrumental design choices of the LIFE mission concept for the detection of cooling protoplanets with transient high-temperature magma ocean atmospheres, in young stellar associations in particular. Using the LIFE mission instrument simulator (LIFEsim) we assess how specific instrumental parameters and design choices, such as wavelength coverage, aperture diameter, and photon throughput, facilitate or disadvantage the detection of protoplanets. We focus on the observational sensitivities of distance to the observed planetary system, protoplanet brightness temperature using a blackbody assumption, and orbital distance of the potential protoplanets around both G- and M-dwarf stars. Our simulations suggest that LIFE will be able to detect (S/N $\geq$ 7) hot protoplanets in young stellar associations up to distances of $\approx$100 pc from the solar system for reasonable integration times (up to $\sim$hours). Detection of an Earth-sized protoplanet orbiting a solar-sized host star at 1 AU requires less than 30 minutes of integration time. M-dwarfs generally need shorter integration times. The contribution from wavelength regions $<$6 $\mu$m is important for decreasing the detection threshold and discriminating emission temperatures.
Abstract This study aims to identify exemplary science cases for observing N 2 O, CH 3 Cl, and CH 3 Br in exoplanet atmospheres at abundances consistent with biogenic production using a space-based mid-infrared nulling interferometric observatory, such as the Large Interferometer For Exoplanets (LIFE) mission concept. We use a set of scenarios derived from chemical kinetics models that simulate the atmospheric response of varied levels of biogenic production of N 2 O, CH 3 Cl, and CH 3 Br in O 2 -rich terrestrial planet atmospheres to produce forward models for our LIFE sim observation simulator software. In addition, we demonstrate the connection to retrievals for selected cases. We use the results to derive observation times needed for the detection of these scenarios and apply them to define science requirements for the mission. Our analysis shows that in order to detect relevant abundances with a mission like LIFE in its current baseline setup, we require: (i) only a few days of observation time for certain very nearby “golden target” scenarios, which also motivate future studies of “spectral-temporal” observations (ii) ∼10 days in certain standard scenarios such as temperate, terrestrial planets around M star hosts at 5 pc, (iii) ∼50–100 days in the most challenging but still feasible cases, such as an Earth twin at 5 pc. A few cases with very low fluxes around specific host stars are not detectable. In summary, the abundances of these capstone biosignatures are detectable at plausible biological production fluxes for most cases examined and for a significant number of potential targets.
The Large Interferometer For Exoplanets (LIFE) initiative is developing the science and a technology roadmap for an ambitious space mission featuring a space-based mid-infrared (MIR) nulling interferometer in order to detect the thermal emission of hundreds of exoplanets and characterize their atmospheres. In order to quantify the science potential of such a mission, in particular in the context of technical trade-offs, an instrument simulator is required. In addition, signal extraction algorithms are needed to verify that exoplanet properties (e.g., angular separation, spectral flux) contained in simulated exoplanet datasets can be accurately retrieved. We present LIFEsim, a software tool developed for simulating observations of exoplanetary systems with an MIR space-based nulling interferometer. It includes astrophysical noise sources (i.e., stellar leakage and thermal emission from local zodiacal and exo-zodiacal dust) and offers the flexibility to include instrumental noise terms in the future. LIFEsim provides an accessible way for predicting the expected SNR of future observations as a function of various key instrument and target parameters. The SNRs of the extracted spectra are photon-noise dominated, as expected from our current simulations. From single epoch observations in our mock survey of small ($R < 1.5 R_\mathrm{Earth}$) planets orbiting within the habitable zones of their stars, we find that typical uncertainties in the estimated effective temperature of the exoplanets are $\lesssim$10%, for the exoplanet radius $\lesssim$20%, and for the separation from the host star $\lesssim$2%. SNR values obtained in the signal extraction process deviate less than 10% from purely photon-counting statistics based SNRs. (abridged)
Context: NOTT (formerly Hi-5) is a new high-contrast L' band (3.5-4.0 \textmu m) beam combiner for the VLTI with the ambitious goal to be sensitive to young giant exoplanets down to 5 mas separation around nearby stars. The performance of nulling interferometers in these wavelengths is affected both by fundamental noise from the background and by the contributions of instrumental noises. This motivates the development of end-to-end simulations to optimize these instruments. Aims: To enable the performance evaluation and inform the design of such instruments on the current and future infrastructures, taking into account the different sources of noise, and their correlation. Methods: SCIFYsim is an end-to-end simulator for single mode filtered beam combiners, with an emphasis on nulling interferometers. It is used to compute a covariance matrix of the errors. Statistical detection tests based on likelihood ratios are then used to compute compound detection limits for the instrument. Results: With the current assumptions on the performance of the wavefront correction systems, the errors are dominated by correlated instrumental errors down to stars of magnitude 6-7 in the L band, beyond which thermal background from the telescopes and relay system becomes dominant. Conclusions: SCIFYsim is suited to anticipate some of the challenges of design, tuning, operation and signal processing for integrated optics beam combiners. The detection limits found for this early version of NOTT simulation with the unit telescopes are compatible with detections at contrasts up to $10^5$ in the L band at separations of 5 to 80 mas around bright stars.
ERIS (Enhanced Resolution Imager and Spectrograph) is a new adaptive optics instrument installed at the Cassegrain focus of the VLT-UT4 telescope at the Paranal Observatory in Chile. ERIS consists of two near-infrared instruments: SPIFFIER, an integral field unit (IFU) spectrograph covering J to K bands, and NIX, an imager covering J to M bands. ERIS has an adaptive optics system able to work with both LGS and NGS. The Assembly Integration Verification (AIV) phase of ERIS at the Paranal Observatory was carried out starting in December 2021, followed by several commissioning runs in 2022. This contribution will describe the first preliminary results of the on-sky performance of ERIS during its commissioning and the future perspectives based on the preliminary scientific results.
A mid-infrared nulling-space interferometer is a promising way to characterize thermal light from habitable planet candidates around Sun-like stars. However, one of the main challenges for achieving this ambitious goal is a high-precision stability of the optical path difference (OPD) and amplitude over a few days for planet detection and up to a few weeks for in-depth characterization. Here we propose a new method called phase-space synthesis decomposition (PSSD) to shorten the stability requirement to minutes, significantly relaxing the technological challenges of the mission. Focusing on what exactly modulates the planet signal in the presence of the stellar leak and systematic error, PSSD prioritizes the modulation of the signals along the wavelength domain rather than baseline rotation. Modulation along the wavelength domain allows us to extract source positions in parallel to the baseline vector for each exposure. The sum of the one-dimensional data converts into two-dimensional information. Based on the reconstructed image, we construct a continuous equation and extract the spectra through the singular value decomposition (SVD) while efficiently separating them from a long-term systematic stellar leak. We performed numerical simulations to investigate the feasibility of PSSD for the LIFE mission concept. We confirm that multiple terrestrial planets in the habitable zone around a Sun-like star at 10 pc can be detected and characterized despite high levels and long durations of systematic noise. We also find that PSSD is more robust against a sparse sampling of the array rotation compared to purely rotation-based signal extraction. Using PSSD as signal extraction method significantly relaxes the technical requirements on signal stability and further increases the feasibility of the LIFE mission.
The Enhanced Resolution Imager and Spectrograph (ERIS) is the new near-infrared instrument at the VLT-UT4. ERIS replaces and extends the observational capabilities formerly provided by SINFONI and NACO: integral field spectroscopy at 1 - 2.5 $\mu$m, imaging at 1 - 5 $\mu$m with several options for high-contrast imaging, and long-slit spectroscopy. In particular, a vortex coronagraph is now available for high contrast observations at L and M band. It is implemented using annular groove (or vortex) phase masks (one for each of the L and M bands) in a focal plane, and a Lyot stop in a downstream pupil plane. The vortex coronagraph has a discovery space starting already at $\sim$1$\lambda/D$, and works well in broadbands. However, to reach its optimal performance, it is critical to correct for slow pointing errors onto the vortex phase mask, which mandates a dedicated pointing control strategy. To do so, a control loop based on the QACITS algorithm has been developed and commissioned for ERIS. Good pointing stability is now regularly achieved with errors between 0.01 and 0.02 $\lambda/D$ and a correction rate of 0.2 Hz. In this contribution, we first review the design of the ERIS vortex coronagraph. We then detail the implementation of the QACITS algorithm describing the entire observing sequence, including the calibration steps, the initial centering, and the stabilization during the observing template. We then discuss performance based on commissioning data in terms of pointing accuracy and stability. Finally, we present post-processed contrast curves obtained during commissioning and compare them with NACO vortex data, showing a significant improvement of about 1 mag at all separations.
The next generation of space-based observatories will characterize the atmospheres of low-mass, temperate exoplanets with the direct-imaging technique. This will be a major step forward in our understanding of exoplanet diversity and the prevalence of potentially habitable conditions beyond the Earth. We compute a list of currently known exoplanets detectable with the mid-infrared Large Interferometer For Exoplanets (LIFE) in thermal emission. We also compute the list of known exoplanets accessible to a notional design of the Habitable Worlds Observatory (HWO), observing in reflected starlight. With a pre-existing method, we processed the NASA Exoplanet Archive and computed orbital realizations for each known exoplanet. We derived their mass, radius, equilibrium temperature, and planet-star angular separation. We used the LIFEsim simulator to compute the integration time ($t_{int}$) required to detect each planet with LIFE. A planet is considered detectable if a broadband signal-to-noise ratio $S/N$=7 is achieved over the spectral range $4-18.5\mu$m in $t_{int}\leq$100 hours. We tested whether the planet is accessible to HWO in reflected starlight based on its notional inner and outer working angles, and minimum planet-to-star contrast. LIFE's reference configuration (four 2-m telescopes with 5% throughput and a nulling baseline between 10-100 m) can detect 212 known planets within 20 pc. Of these, 55 are also accessible to HWO in reflected starlight, offering a unique opportunity for synergies in atmospheric characterization. LIFE can also detect 32 known transiting exoplanets. Furthermore, 38 LIFE-detectable planets orbit in the habitable zone, of which 13 with $M_p<5M_\oplus$ and 8 with $5M_\oplus
While VLTI offers the recombination of four 8-m telescopes with baselines of more than 100m, it has never hosted a dedicated high-contrast nulling beam-combiner.The SCIFY project aims to design, build and commission Hi-5, the first nulling beam-combiner of the VLTI, optimized for the detection and characterization of young giant exoplanets near the snow line, with spectroscopy up to R=2000 in the L' band.It will make use of advanced four-beam nulling combination schemes, like double-Bracewell and kernel-nulling implemented in a single-mode photonic device to produce differential nulled outputs with self-calibrating properties.In the wavelength range of interest, both instrumental errors and background noise are significant.In order to estimate the practical performance of these different configurations in the presence of instrumental errors and further optimize the instrumental design, we have developed SCIFYsim.SCIFYsim is an end-to-end simulator geared towards singlemode beam combiners with of a wide variety of instrumental errors, like optical path difference residuals from fringe tracking, wavefront error at the injection, longitudinal dispersion, chromaticity of the combiner chip, and more.In order to evaluate the performance of the combined spectral channels, we use statistical tests based on likelihood ratios, and account for the covariance in the data.In this paper, we present the expected performance of Hi-5 with a few examples and discuss the main technical limitations to reach the contrast required to image young giant exoplanets.