An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.
We present an alternative approach to fabricating hexagonally arranged nanodot arrays of various metals by seed-mediated electroless plating with a cylinder-forming block copolymer thin film, PEO-b-PMA(Az), as a scaffold. Metal ions were selectively incorporated into PEO cylinders, followed by their reduction to metal and the etching of the scaffold to obtain highly ordered seed arrays of Au, Pd, and Pt. Nanodot arrays of the target metals (Au, Ag, and Ni) were selectively grown on the seed with their highly ordered arrangement by electroless plating. We studied the fabrication processes' suitability for control of the nanodot array size, as well as the plasmonic properties thereof.
Solution-processable star-shaped and linear π-conjugated oligomers consisting of an electron-donating tetrathienoanthracene (TTA) core and electron-accepting diketopyrrolopyrrole (DPP) arms, namely, TTA-DPP4 and TTA-DPP2, were designed and synthesized. Based on density functional theory calculations, the star-shaped TTA-DPP4 has a larger oscillator strength than the linear TTA-DPP2, and consequently, better photoabsorption property over a wide range of visible wavelengths. The photovoltaic properties of organic solar cells based on TTA-DPP4 and TTA-DPP2 with a fullerene derivative were evaluated by varying the thickness of the bulk heterojunction active layer. As a result of the enhanced visible absorption properties of the star-shaped π-conjugated structure, better photovoltaic performances were obtained with relatively thin active layers (40–60 nm).
Organic photovoltaics (OPVs) that perform more efficiently under artificial indoor lighting conditions than they do under sunlight are attracting growing interest as they can potentially serve as ambient energy harvesters for powering low-power electronics and portable devices for the Internet of Things. Herein, solution-processed small-molecule OPVs are demonstrated to exhibit high power conversion efficiencies exceeding 16% under white LED illumination, delivering high output power densities of up to 12.4 and 65.3 μW cm–2 at 200 and 1000 lx, respectively. Increasing the open-circuit voltage (Voc) of OPVs is a critical factor for achieving higher indoor photovoltaic performance. Toward real applications, this small-molecule OPV system is adopted to fabricate six series-connected modules with an active area of ∼10 cm2 that are capable of generating a high output power surpassing 100 μW and a high Voc of over 4.2 V even under dimly lit indoor conditions of 200 lx. These results indicate that OPVs are promising as indoor electric power sources for self-sustainable electronic devices.
Solution-processed organic solar cells (OSCs) based on narrow-band gap small molecules hold great promise as next-generation energy-converting devices. In this paper, we focus on a family of A-π-D-π-A-type small molecules, namely, BDT- nT-ID ( n = 1-4) oligomers, consisting of benzo[1,2- b:4,5- b']dithiophene (BDT) as the central electron-donating (D) core, 1,3-indandione (ID) as the terminal electron-accepting (A) units, and two regioregular oligo(3-hexylthiophene)s ( nT) with different numbers of thiophene rings as the π-bridging units, and elucidate their structure-property-function relationships. The effects of the length of the π-bridging nT units on the optical absorption, thermal behavior, morphology, hole mobility, and OSC performance were systematically investigated. All oligomers exhibited broad and intense visible photoabsorption in the 400-700 nm range. The photovoltaic performances of bulk heterojunction OSCs based on BDT- nT-IDs as donors and a fullerene derivative as an acceptor were studied. Among these oligomers, BDT-2T-ID, incorporating bithiophene as the π-bridging units, showed better photovoltaic performance with a maximum power conversion efficiency as high as 6.9% under AM 1.5G illumination without using solvent additives or postdeposition treatments. These favorable properties originated from the well-developed interpenetrating network morphology of BDT-2T-ID, with larger domain sizes in the photoactive layer. Even though all oligomers have the same A-D-A main backbone, structural modulation of the π-bridging nT length was found to impact their self-organization and nanostructure formation in the solid state, as well as the corresponding OSC device performance.
Pb-Ti-Nb-O ferroelectric thin films with various Nb additions are grown on a Pt/Ti/SiO 2 /Si substrate at 400 °C by metal-organic (MO) CVD. A high density of dome-like surface protrusions is observed by scanning electron microscopy (SEM) in all the as-prepared films. Both the shape and the size of the surface defects are found to be Nb-content-dependent. The internal microstructure of the protrusions is further characterized by cross-section transmission electron microscopy (XTEM). The origins of these surface defects are discussed, based on the substrate hillock as well as the crystallization behavior of the film forming precursors during MOCVD. The development of the observed surface defects is modeled using a two-dimensional vector analysis.
A series of amphiphilic liquid crystalline diblock copolymers, PEOm-b-PMA(Az)n, consisting of hydrophilic poly(ethylene oxide) and hydrophobic poly(methacrylate) moieties with side chains containing liquid crystalline (LC) azobenzene moieties, produced highly ordered microphase-separated films with PEO cylinders aligned perpendicular to the smectic LC layer of azobenzene in the PMA(Az) matrix. In this paper, morphological phase diagrams of PEOm-b-PMA(Az)n diblock copolymers above and below the isotropic transition temperature of LC azobenzene (Tiso) are presented. The diagrams are based on small-angle X-ray scattering (SAXS) measurements of approximately 70 kinds of polymers with varying degrees of polymerization in each block. An asymmetric phase diagram described against the volume fraction of PEO (fPEO) was obtained at temperatures above and below Tiso. The lamellar phase appears in the fPEO window 0.52 ≤ fPEO ≤ 0.78 above and below Tiso. Besides, the wide window, 0.087 ≤ fPEO < 0.52, allows the PEO cylinder phase to form below Tiso. In particular, the PEO sphere phase, observed above Tiso, was completely eliminated through an order–order transition (OOT) to the PEO cylinder phase in the window 0.087 ≤ fPEO ≤ 0.23. Such a large expansion in the PEO-cylinder-phase window could be attributed to the main chain of LC PMA(Az) being shorter than that of the flexible PEO chain, and LC azobenzene forming a smectic layer in the microphase separated system.
A transition-metal-free controlled polymerization for the attainment of poly(p-aryleneethynylene)s is developed. The polymerization of 1-pentafluorophenyl-4-[(trimethylsilyl)ethynyl]benzene with a catalytic amount of fluoride anions proceeds in a chain-growth-like manner to afford polymers with controlled molecular weights and low polydispersity indexes. The mechanism involves a pentacoordinated fluorosilicate as a key intermediate. The anionic "living" nature of this process is applied to block copolymerization and also surface-terminated polymerization.