We analyze, using Monte Carlo simulations, how a dielectric medium, modeled as a Stockmayer fluid, modulates the force between two similarly charged surfaces. A major objective is to provide a basis for understanding the strengths and weaknesses of the primitive model. The system studied has uniformly charged walls separated by counterions and solvent, where the latter is kept at constant chemical potential as the separation between the walls is varied. For two different types of Stockmayer fluids, one with a "low" (ε(r) ≃ 4.4) and one with a "high" (ε(r) ≃ 20) relative dielectric permittivity, the size of the solvent molecules is varied systematically. As the size of the solvent molecules becomes smaller one approaches the continuum limit, where the primitive model should give an increasingly more accurate representation. We find that having an explicit description of the solvent gives rise to an oscillatory component in the force between the surfaces. The wavelength of the oscillations reflects the diameter of the solvent molecules. The smaller the solvent molecules the smaller are the amplitudes of the oscillations. On integrating the force curves to yield interaction free energies the oscillatory features become less apparent. For the smallest solvent size studied the interaction curves show clear similarities with those obtained from the primitive model. The qualitative effect of the dielectric screening is recovered. It is found that the deviations from the mean field description also appear for the molecular solvent. All this suggests that there are no major deviations due to the neglect of many-body contributions in the solvent-averaged potential of the primitive model. This also holds for the incompressibility assumption implicitly applied when using the primitive model.
ADVERTISEMENT RETURN TO ISSUEPREVArticleNEXTProton, deuterium, and tritium nuclear magnetic resonance of intramolecular hydrogen bonds. Isotope effects and the shape of the potential energy functionLawrence J. Altman, Pilip Laungani, Gudmundur Gunnarsson, Hakan Wennerstrom, and Sture ForsenCite this: J. Am. Chem. Soc. 1978, 100, 26, 8264–8266Publication Date (Print):December 1, 1978Publication History Published online1 May 2002Published inissue 1 December 1978https://pubs.acs.org/doi/10.1021/ja00494a040https://doi.org/10.1021/ja00494a040research-articleACS PublicationsRequest reuse permissionsArticle Views719Altmetric-Citations154LEARN ABOUT THESE METRICSArticle Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated. Share Add toView InAdd Full Text with ReferenceAdd Description ExportRISCitationCitation and abstractCitation and referencesMore Options Share onFacebookTwitterWechatLinked InRedditEmail Other access optionsGet e-Alertsclose Get e-Alerts
In this study the effect of cholesterol in Langmuir−Blodgett monolayers of fatty acids of varying chain lengths was investigated by atomic force microscopy (AFM). Domain formation due to lateral phase separation was studied at different lipid compositions and surface pressures. A small amount of cholesterol is miscible with palmitic acid (C16:0) and forms a flat monolayer while excess cholesterol forms a rougher cholesterol-rich phase. No miscibility was observed in monolayers of lignoceric acid (C24:0) and cholesterol. For the ternary mixed monolayer (palmitic acid, lignoceric acid, and cholesterol) the two fatty acids formed separate domains and the miscibility of cholesterol in the two phases showed behavior corresponding to that of the binary fatty acid−cholesterol systems. From the shape, size, and height differences of the domains one can conclude that the driving force to minimize the interfacial length between different phases is reduced in the presence of cholesterol. This can be attributed to line active properties of cholesterol.
The chemical potential of water ( is conventionally expressed in terms of the osmotic pressure (πosm). We have previously suggested that the main contribution to the intracellular πosm of the bacterium E. coli is from soluble negatively-charged proteins and their counter-ions. Here, we expand on this analysis by examining how evolutionary divergent cell types cope with the challenge of maintaining πosm within viable values. Complex organisms, like mammals, maintain constant internal πosm ≈ 0.285 osmol, matching that of 0.154 M NaCl. For bacteria it appears that optimal growth conditions are found for similar or slightly higher πosm (0.25-0.4 osmol), despite that they represent a much earlier stage in evolution. We argue that this value reflects a general adaptation for optimising metabolic function under crowded intracellular conditions. Environmental πosm that differ from this optimum require therefore special measures, as exemplified with gram-positive and gram-negative bacteria. To handle such situations, their membrane encapsulations allow for a compensating turgor pressure that can take both positive and negative values, where positive pressures allow increased frequency of metabolic events through increased intracellular protein concentrations. A remarkable exception to the rule of 0.25-0.4 osmol, is found for halophilic archaea with internal πosm ≈ 15 osmol. The internal organization of these archaea differs in that they utilize a repulsive electrostatic mechanism operating only in the ionic-liquid regime to avoid aggregation, and that they stand out from other organisms by having no turgor pressure.
We present a novel method for measuring interbilayer forces in lamellar liquid crystals of amphiphile–water systems. In a centrifuge the gravitational effect is easily strong enough to produce clearly observable concentration gradients. During the experiment the concentration profile in the test-tube is monitored using NMR imaging of the deuterium quadrupole splitting in the lamellar phase, by temporarily transferring the sample into a NMR spectrometer. We also present a theoretical analysis of the experiment, where interactions dominate over entropy of mixing effects. For a system at sedimentation equilibrium one obtains a direct measurement of the interbilayer force, or equivalently chemical potential of the components over a substantial concentration range. It requires long times to obtain equilibrium in the centrifuge but very useful information about equilibrium and dynamic parameters is also obtained through an analysis of the sedimentation process. Experiments were performed on samples of a dilute lamellar phase of the non-ionic surfactant C10E3. After a few days of centrifugation a consistent concentration pattern was observed. At the bottom of the sample there appears a pure water-phase. The concentration profiles stabilize after a long centrifugation time. If they are related to the phase boundary the different profiles superimpose. This observation is consistent with the theory and the observation allows for a determination of how the chemical potentials vary with composition. The observed profiles are consistent with a dominating undulation force with a bilayer bending rigidity of 4.8–5.1 kT.