In this study, silk fibroin nanowhiskers (SNWs) were extracted from natural silk fiber by sulfuric acid hydrolysis with the assistance of ultrasonic wave treatment. The obtained SNWs were mixed with regenerated silk fibroin (RSF) solution to fabricate the SNWs/RSF films. The fabricating SNWs were systematically characterized by using SEM, FTIR, and the SNWs/RSF films were observed by digital camera, PM, etc. The results show that the monodisperse SNWs are evenly distributed in the RSF film. The presence of SNWs in RSF film significantly improves the performances of the film, including the swelling ability, mechanical properties, hydrophilicity, antibacterial efficacy, cytocompatibility. Meanwhile, the SNWs/RSF film can endorse the wound healing efficiency in vivo mice wound site. The proposed techniques for extracting SNWs and fabricating silk fibroin composite film may provide a valuable method for creating an ideal silk-based material for biomedical applications.
Pectic polysaccharides were extracted from soy flour at either room temperature (SPRT) or 121°C (SPH), and their abilities to stabilize milk proteins in acidic conditions were evaluated. Both SPRT and SPH were found to contain proteinaceous components that were difficult to dissociate from polysaccharide components using size exclusion chromatography, whereas the molar mass of the former was approximately twice that of the latter. Due to the higher molar mass, SPRT was expected to provide stronger steric effects to prevent aggregation between milk proteins in acidic conditions than SPH. Alkaline treatment of SPRT for breaking O-linkages between AA and monosaccharide residues decreased its molar mass by approximately 160 kDa, indicating that they contained naturally occurring conjugates of pectic and proteinaceous moieties. Particle size distributions in simulated acidified milk drink samples containing 0.2% SPRT or SPH showed monomodal distributions with median diameters of around 1.2 μm at pH 4. The presence of large protein aggregates (∼5 μm) was detected at 0.2% SPRT and pH 3.2, 0.6 to 0.8% SPRT and pH 4, or 0.2% SPH and pH 3.4. The presence of excess polysaccharide molecules unbound to proteins was detected at 0.2% SPRT and pH 3.2 to 3.4, 0.4 to 0.8% SPRT and pH 4, 0.2% SPH and pH 3.4 to 3.6, and 0.4 to 0.8% SPH and pH 4. The present results suggest that molecular characteristics of pectic polysaccharides vary depending on extraction conditions and hence their functional behavior.
Novel tissue engineering scaffold materials of nano-hydroxyapatite (nHA)/silk fibroin (SF) biocomposite were prepared by freeze-drying. The needle-like nHA crystals of about 10 nm in diameter by 50-80 nm in length, which were uniformly distributed in the porous nHA/SF scaffolds, were prepared by a co-precipitation method with a size. The as-prepared nHA/SF scaffolds showed good homogeneity, interconnected pores and high porosity. XRD and FT-IR analysis suggested that the silk fibroin was in beta-sheet structure, which usually provides outstanding mechanical properties for silk materials. In this work, composite scaffolds containing as high as 70% (w/w) nHA were prepared, which had excellent compressive modulus and strength, higher than the scaffolds at low nHA content level and other porous biodegradable polymeric scaffolds often considered in bone-related tissue engineering reported previously. The cell compatibility of composite scaffolds was evaluated through cell viability by MTT assay. All these results indicated that these nHA/SF scaffold materials may be a promising biomaterial for bone tissue engineering.