Heavy metals (HMs) in aquatic environments are characterized by high toxicity, a propensity for bioaccumulation, and non-degradability, and pose significant risks to biological communities. Previous studies of HMs in lakes have shown that the physical and chemical characteristics of the lake water may control both the migration of HMs in the sediments and the concentration of heavy metals in the lake water. In fact, the change in aquatic environments changes the heavy metal fraction in the sediment, which controls the release of HMs. In this paper, we investigated the effects of the pH, temperature, and salinity levels of overlying water on the chemical fraction of Cu and Zn in Wuliangsuhai Lake surface sediments. The results show that lower water pH and higher water salinity and temperature could increase Cu and Zn release from the sediment. An increase in pH led to changes in the speciation of solid fractions of Zn, namely increases in the residual fraction and decreases in the organic matter and sulfide, whereas acid-extractable and Fe-Mn oxide fractions remained largely the same. Increases in temperature and salinity led to opposite changes in the speciation of solid fractions, namely decreases in the residual fraction and increases in the organic matter and sulfide and Fe-Mn oxide fractions, whereas acid-extractable fractions remained largely the same. The effect of pH, temperature, and salinity on Cu fractions in the solids was much smaller. According to the ratio of the secondary phase to the primary phase (RSP), acidic, high-temperature, and high-salt conditions increase the release risks of Zn. Changes in water temperature have the greatest influence on the risk of Zn and Cu release from sediments, followed by the influence of salinity changes.
Mercury and arsenic are two highly toxic pollutants, and many researchers have explored the effects of the two substances on the environment. However, the research content of toxic substances in frozen periods is relatively small. To explore the spatial and vertical distribution of mercury and arsenic in the ice, water, and sediments of Wuliangsuhai Lake under ice conditions, and to assess the harm degree of the two toxic substances to human beings. We collected the ice, water, and sediments of the lake in December 2020, and tested the contents of Hg and As. The single-factor pollution index method, the local cumulative index method, and the ecological risk coding method were used to assess the pollution status in these three environmental media, and the Monte Carlo simulation combined with the quantitative model recommended by USEPA was used to assess the population health risk. The results showed that (1) The average single-factor pollution values of Hg and As in water were 0.367 and 0.114, both pollutants were at clean levels during the frozen period. (2) The mean Igeo values of Hg and As were 0.657 and -0.948. The bioavailability of Hg in the sediments of Wuliangsuhai Lake during the frozen period was high, and its average value was 7.8%, which belonged to the low-risk grade. The bioavailability of As ranged from 0.2% to 3.7%, with an average value of 1.3%. (3) Monte Carlo simulation results indicate acceptable levels of health risks in both water and ice. This study preliminarily investigated the distribution characteristics of toxic substances and their potential effects on human health in lakes in cold and arid regions during the frozen period. It not only clarified the pollution characteristics of lakes in cold and arid regions during the frozen period, but also provided beneficial supplements for the ecological protection of lake basins. This study lays a foundation for further environmental science research in the region in the future.
Abstract Ecological pollution caused by heavy metals released by sediments is a worldwide concern. However, the effect of changes in sediment speciation on their release of heavy metals has not been adequately reported. This study analysed changes in the sediment speciation of Pb and Cr before and after a release experiment by varying the temperature, pH, and salinity of the water column. The results show that the release of Pb and Cr from sediments increases with increasing water temperature, mainly due to the conversion of the residual fraction of Pb to the Fe-Mn oxide fraction and Cr converting more residual fraction to the organic matter and sulfide fraction. The release of sediment Pb and Cr decreased with increasing pH, with Pb converting more acid extractable fraction to the residual fraction and Cr converting more organic matter and sulfide fraction to the residual fraction. In contrast, the release of Pb and Cr increased and then decreased with increasing salinity, with the acid extractable and residual fractions of Pb interconverting, and the organic matter and sulfide fraction and the residual fraction of Cr showing higher interconversion. For Pb, the acid extractable fraction was more susceptible to conversion to the residual fraction by environmental influences, whereas for Cr, the organic matter and sulfide fraction was susceptible to conversion to the residual fraction. This study highlights the influence of environmental factors on the sediment speciation of heavy metals, which can help reveal the transport and transformation of heavy metals in cold and arid lake sediments.
As an important indicator of water pollution, heavy metals can reflect the severity of pollution in the entire study area. Although the risk assessment of heavy metals in sediment from various lakes has been widely studied, there is a lack of understanding on the overall pollution risk assessment of heavy metals in sediment from Inner Mongolia lakes. This study based on data from 2019 to 2023 on heavy metals (Cu, Zn, Pb, Cr, and Cd) in typical lake sediments in Inner Mongolia, this study evaluated the toxicity, contamination levels, and potential ecological risks of each lake. Furthermore, the origins of heavy metals in lake sediments were quantitatively analyzed using an absolute principal component core–multiple linear regression model. This study presented the following results. (1) In 24 typical lakes, the concentrations of Cd, Cu, Zn, Pb, and Cr exceeded the background values of soil elements in Inner Mongolia by 91.67%, 29.17%, 16.67%, 20.83%, and 29.17%, respectively. (2) According to the toxicity index, ground accumulation index, and potential ecological risk coefficient, Cd and Cr were identified as the most hazardous and toxic elements in typical lake sediments in Inner Mongolia. (3) The degree of lake pollution in Inner Mongolia followed a heavy to light gradient, with central > eastern > western. The pollution in western lakes primarily originated from natural factors, whereas central lakes were mainly affected by pollutants from industry, agriculture, and human activities. Eastern lakes experienced pollution primarily from animal husbandry activities and natural factors. The comprehensive analysis presented in this study can serve as a valuable reference for the restoration of polluted lakes.
To explore the spatial and temporal distribution characteristics of heavy metals in the surface sediments of lakes in cold regions during ice-sealing and non-ice-sealing periods, we analyzed the potential ecological risk degree and the pollution sources. A total of 20 sampling sites in Lake Ulansuhai in cold regions were collected from 2020 to 2021, and 120 surface sediment samples were collected during different periods. The contents of As, Cd, Cr, Cu, Ni, Pb, Zn, and Hg were determined. Correlation analysis, principal component analysis, and the absolute factor score-multiple linear regression (APCS-MLR) receptor model were used to trace the source of heavy metal pollution. The results showed that:① the distribution of heavy metals in lake surface sediments was different between the ice-sealing period and the non-ice-sealing period. The distribution of heavy metals during the ice-sealing period was higher in the north and lower in the south. Cd and Hg were mainly distributed in the central and southern lakes during the non-glacial period. ② Hg, Cd, and As were moderately polluted, and Ni was mildly polluted in the surface sediments of the lake. The overall performance was at a high risk level, and the pollution level during the non-ice-sealing period was higher than that during the ice-sealing period. The main environmental risk factors were Hg and Cd, which showed high risk and moderate risk, respectively. ③ The sources of heavy metals in lake surface sediments were mainly industrial sources from mining and transportation, agricultural sources, and natural sources. As, Ni, Pb, and Hg were mainly affected by industrial sources, with contribution rates of 62.67%, 75.31%, 77.47%, and 80.11%, respectively. The main sources of Cu and Zn were natural sources, and Cd was greatly affected by agricultural sources. The contribution rate was 81.57%. The source of Cr was mainly affected by natural factors, and the influence of human activities and unknown sources require further attention.
In this paper, the reservoir is modeled by homogeneous two-phase media based on BISQ model. We focus on the effects of the squirt flow on the fundamental guided waves propagation in borehole embedded in saturated porous media excited by monopole, dipole and quadrupole point sources. The full waveforms acoustic logging in a fluid-filled borehole are simulated. The curves of velocity dispersion, attenuation coefficients and excitation of the fundamental guided waves have shown that velocity dispersions are almost independent of the characteristic squirt flow length, attenuations of guided waves are enhanced due to the squirt flow, and excitations of guided waves are decreased due to the squirt flow. It is possible to estimate the characteristic squirt flow length by attenuation coefficients of the guided waves from acoustical logging data.