Crush syndrome (CS), alternatively termed traumatic rhabdomyolysis, is a paramount posttraumatic complication. Given the infeasibility of conducting direct simulation research in humans, the role of animal models is pivotal. Regrettably, the dearth of standardized animal models persists. The objective of this study was to construct a repeatable standardized rat CS models and, based on this, simulate specific clinical scenarios. Methods: Using a self-developed multichannel intelligent small-animal crush injury platform, we applied a force of 5 kg to the hind limbs of 8-week-old rats (280-300 g), subjecting them to a continuous 12 h compression to establish the CS model. Continuous monitoring was conducted for both the lower limbs and the overall body status. After decompression, biochemical samples were collected at 3, 6, 12, and 24 h. In addition, we created a CS model after resection of the left kidney (UNx-CS), which was conceptualized to simulate a more challenging clinical scenario to investigate the physiological and pathological responses rats with renal insufficiency combined with crush injury. The results were compared with those of the normal CS model group. Results : Our experiments confirm the stability of the crush injury platform. We defined the standardized conditions for modeling and successfully established rats CS model in bulk. After 12 h of compression, only 40% of the rats in the CS group survived for 24 h. Systemically, there was clear evidence of insufficient perfusion, reflecting the progression of CS from localized to generalized. The injured limbs displayed swelling, localized perfusion deficits, and severe pathological alterations. Significant changes were observed in blood biochemical markers: aspartate transaminase, lactate dehydrogenase, K+, creatine kinase, creatinine, and blood urea nitrogen levels rose rapidly after decompression and were significantly higher than the sham group. The kidney demonstrated characteristic pathological changes consistent with established CS diagnostic criteria. Although the UNx-CS rat model did not exhibit significant biochemical differences and pathological scores when compared with the standard CS model, it did yield intriguing results with regard to kidney morphology. The UNx-CS group manifested a higher incidence of cortical and medullary protein casts compared with the NC-CS group. Conclusion: We developed and iteratively refined a novel digital platform, addressing the multiple uncontrollable variables that plagued prior models. This study validated the stability of the platform, defined the standardized conditions for modeling and successfully established the CS model with good repeatability in bulk. In addition, our innovative approach to model a clinically challenging scenario, the UNx-CS rat model. This offers an opportunity to delve deeper into understanding the combined effects of preexisting renal compromise and traumatic injury. In summary, the development of a standardized, reproducible CS model in rats represents a significant milestone in the study of Crush syndrome. This study is of paramount significance as it advances the standardization of the CS model, laying a solid foundation for subsequent studies in related domains, especially in CS-AKI.
We report on an experimental evidence of a significantly different dynamic nuclear polarization (DNP) for localized and itinerant electrons in n-GaAs. Optically injected spin-polarized electrons are used to generate dynamic nuclear polarization via electron-nucleus hyperfine interaction. Using time resolved Kerr rotation measurements for probing the transient Overhauser field, the DNP time constants for itinerant and localized electrons are extracted to be 10 min and less than 1 min, respectively. This is attributed to a rapid DNP occurring in the vicinity of the donors followed by a delayed nuclear spin polarization in between the donor sites.
We have fabricated micrometer-sized single-turn coils on top of charged CdSe/ZnSe quantum dot heterostructures by lithographical techniques. Current injection creates magnetic fields in the some 10 mT range, strong enough to modulate the hyperfine interaction. The very low coil inductance allows for generation of fast field transients. We demonstrate local control of the resident electron spin as well as read-out of the nuclear spin state on the 10 ns time scale by electrical current pulses.
Objectives Low skeletal muscle mass, strength, or somatic function are used to diagnose sarcopenia; however, effective assessment methods are still lacking. Therefore, we evaluated the effectiveness of ultrasound in identifying patients with sarcopenia. Methods This study included 167 patients, 78 with sarcopenia and 89 healthy participants, from two hospitals. We evaluated clinical factors and five ultrasound imaging features, of which three ultrasound imaging features were used to create the model. In both the training and validation datasets, the sarcopenia detection performances of chosen ultrasonic characteristics and the constructed model were evaluated using receiver operating characteristic (ROC) curves. The predictive performance was evaluated by area under the ROC (AUROC), calibration, and decision curves. Results There were statistically significant differences in muscle thickness (MT) of gastrocnemius medialis muscle (GM), flaky myosteatosis echo (FE), pennation angle (PA), average shear wave velocity (SWV) in the relaxed state (RASWV), and average SWV in the passive stretched state (PASWV) between sarcopenic and normal subjects. PA, RASWV, and PASWV were effective predictors of sarcopenia. The AUROC (95% confidence interval) for these three parameters were 0.930 (0.882–0.978), 0.865 (0.791–0.940), and 0.849 (0.770–0.928), respectively, in the training set, and 0.873 (0.777–0.969), 0.936 (0.878–0.993), and 0.826 (0.716–0.935), respectively, in the validation set. The combined model had better detection power. Finally, the calibration curve showed that the combined model had good prediction accuracy. Conclusion Our model can be used to identify sarcopenia in primary medical institutions, which is valuable for the early recognition and management of sarcopenia patients.
Abstract Hemorrhagic shock (HS) is a common complication after traumatic injury. Early identification of HS can reduce patients’ risk of death. Currently, the identification of HS relies on macrocirculation indicators such as systolic blood pressure and heart rate, which are easily affected by the body's compensatory functions. Recently, the independence of the body's overall macrocirculation from microcirculation has been demonstrated, and microcirculation indicators have been widely used in the evaluation of HS. In this study, we reviewed the progress of research in the literature on the use of microcirculation metrics to monitor shock. We analyzed the strengths and weaknesses of each metric and found that microcirculation monitoring could not only indicate changes in tissue perfusion before changes in macrocirculation occurred but also correct tissue perfusion and cell oxygenation after the macrocirculation index returned to normal following fluid resuscitation, which is conducive to the early prediction and prognosis of HS. However, microcirculation monitoring is greatly affected by individual differences and environmental factors. Therefore, the current limitations of microcirculation assessments mean that they should be incorporated as part of an overall assessment of HS patients. Future research should explore how to better combine microcirculation and macrocirculation monitoring for the early identification and prognosis of HS patients.
We present an approach for electrically manipulating nuclear spins in n-GaAs using an on-chip microcoil. Optically injected spin-polarized electrons are used to generate a dynamic nuclear polarization via electron-nucleus hyperfine interaction with a characteristic time constant of ∼10 min. The saturated Overhauser field amplitude is on the order of several 10 mT and proportional to the spin polarization degree of the injected electrons. Applying an rf field resonant for the A75s nuclei, complete depolarization of A75s nuclear spins is observed.
Laser-induced magnetization dynamics is quantitatively investigated in a van der Waals ferromagnetic Cr2Ge2Te6 nanoflake by means of time-resolved Faraday rotation. Under ferromagnetic resonance conditions, the angular dependence of spin precession dynamics gives rise to a perpendicular magnetic anisotropy with an effective field of 125 ± 8 mT. We further determine the field dependence of the effective damping coefficient, which is dominated by the inhomogeneous broadening of magnetic anisotropy in the regime of a small magnetic field while it diminishes to an intrinsic value of 0.006 ± 0.002 at high fields.
The ability of using onchip microcoils to control the electron–nuclear spin system in semiconductors is demonstrated. Electrically generated magnetic fields of several tens of mT can be obtained on a micrometer length scale, which are switchable on a sub-ns time scale due to the low complex coil impedance. This allows one to electrically (i) manipulate the nuclear spins by means of nuclear magnetic resonance in n-GaAs and (ii) control the hyperfine flip-flop rate in CdSe/ZnSe quantum dots.