An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.
Development of highly sensitive and selective fluorescent sensors toward hazardous analytes represents great progress in fabricating sensing devices for practical applications. In this work, a highly selective sensor with dual functions has been fabricated via facile postmodification of the UiO-MOF. Butene modified salicylaldehyde is covalently linked to the UiO-66 scaffold via an efficient Schiff-base reaction, resulting in a highly fluorescent ozone sensor of UiO-66-butene. Ozonolysis of the terminal olefin followed by β-elimination could significantly quench the bright blue fluorescence of UiO-66-butene, and linear turn-off detection of ozone in the range of 0-100 μM is well established. The detection is highly sensitive and selective, and a detection limit of 73 nM was calculated. Remarkably, the ozonolysis afforded product could further act as a selective sensor for Al3+ via turn-on fluorescence with a detection limit of 142 nM, representing a second potential sensing function. The chemically selective sequential ozonolysis/β-elimination and remarkable dual functions offer the exclusive detection of ozone over other oxidative species as well as Al3+ over other cations following a tandem process, representing the first example of a direct MOF sensor for dual sensing of ozone and Al3+. This work demonstrates the potential of employing combinatorial principles for fabricating highly selective sensors, and postmodification of MOFs represents a promising facile strategy for developing various functional sensors.
An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.
An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.
Abstract ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 200 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a “Full Text” option. The original article is trackable via the “References” option.
A functional tin(IV)–porphyrin derivative was used as a building block to construct a novel 3D porous metal–organic framework (MOF). The MOF is built up from tin(IV)–porphyrin struts linking up Zn atoms and formates joining SnIV centers. The immobilization of the photoactive Sn–porphyrins in the channel walls lets the MOF present remarkable photocatalytic activities for the oxygenation of phenol and sulfides, resulting in excellent yields and remarkable selectivity in heterogeneous phases.
Abstract The porous metalloporphyrinic framework shown in the scheme efficiently catalyses the selective oxidation of ethylbenzene to acetophenone in quantitative yield and with a turnover number of 8076 after 48 hours.
An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.
Two new [12]metallacrown-6 compounds, [MII6(SMe)12] [M = Ru (1), Zn (2)], were constructed from a dimethyl sulfoxide decomposed methylthiol product to doubly bridged metal centers. The RuII compound can prompt alkenylation reactions of phenylpyridines with alkynes to generate monoalkenylated arylpyridines in moderate yields with high regioselectivity and stereoselectivity.