Increasing interest in new sources of secondary metabolites as biologically active substances has resulted in an advanced study of many plant species. Loquat (Eriobotrya japonica (Thunb.) Lindl. = Rhaphiolepis bibas (Lour.) Galasso & Banfi, Rosaceae family), an evergreen, subtropical fruit tree, native to China and Japan, but cultivated in southern countries of Europe, is a species commonly used in folk medicine and may be an excellent source of bioactive compounds. Therefore, the aim of the present study was to evaluate the profile of the phenolic constituents of E. japonica fruits and leaves originating from Tuscany (Italy), as well as their in vitro antioxidant and chemopreventive activities on human cancer cell lines breast adenocarcinoma (MCF-7), colon adenocarcinoma (Caco-2 and HT-29), and glioblastoma (U87MG). Results revealed that the extract of leaves displayed higher antioxidant and anticancer potential than the fruit extract and contained 25 individual phenolic compounds that have been characterized and quantified by the UPLC-PDA-MS method. The antiproliferative activity was correlated with the content of polyphenolic compounds indicating that both fruits and leaves are a good source of antioxidants and may be exploited as nutraceuticals enriching food or as components for the cosmetic/pharmaceutical industry.
The present work evaluates the aromatic waters of rosemary (Salvia rosmarinus Spenn. syn. Rosmarinus officinalis L.), sage (Salvia officinalis L.), and cypress (Cupressus sempervirens L.) obtained as innovative commercial products of a hydrodistillation process. All extracts were exhaustively analysed by GC-MS, 1H-NMR, and LC-MS in order to evaluate potential metabolite fingerprint differences. GC-MS appears to be the most exhaustive technique for the qualitative identification of the single constituents, although in this case, the use of 1H-NMR and LC-MS techniques allowed some useful considerations in semi-quantitative terms. Antimycotic effects were studied against Tricophyton, Candida, and Arthroderma species, resulting in weak activity. The toxicological impact was partly evaluated in vitro by means of allelopathy and brine shrimp lethality. Cytotoxicity was investigated in human colon cancer cells (HCT116) and in hypothalamic cells (Hypo-E22) challenged with hydrogen peroxide. Sage and rosemary hydrosols were the most effective antimycotics, whereas all hydrosols displayed antiradical effects. Cytotoxic effects against HCT116 cells (at 500 µL/mL) were related in silico to the endovanilloid TRPM8 and TRPV1 receptors. At lower concentrations (5-50 µL/mL), the hydrosols protected hypothalamic neurons Hypo-E22 cells from hydrogen peroxide-induced toxicity. The overall experience indicates that hydrolates are an important source of relevant phytochemicals with significant pharmacological potential.
The Nemo's Garden® project is an alternative production system for areas with scarce cultivable land but significant presence of water; thus, it is an interesting intervention to address the climate crisis. This work aimed to evaluate the micromorphological, biochemical, and phytochemical characteristics of Stevia rebaudiana (Bertoni) Bertoni grown underwater compared to the terrestrial specimens. The micromorphological analyses, performed on the leaves using light microscopy, fluorescence microscopy, and scanning electron microscopy, evidenced a general uniformity of the trichome morphotype and distribution pattern. The histochemical investigation indicated the simultaneous presence of terpenes and polyphenols in the trichome secreted material from the underwater samples and a prevailing polyphenolic content in the terrestrial specimens; this was also confirmed by biochemical analyses (26.6 mg GAE/g DW). The characterization of non-volatile components, performed using HPLC-MS, showed similar chemical profiles in all the samples, which were characterized by phenolic compounds and steviol glycosides. The volatile compounds, evaluated using HS-SPME coupled with GC-MS, showed sesquiterpene hydrocarbons as the main class in all the analyzed samples (80.1-93.9%). However, the control plants were characterized by a higher content of monoterpene hydrocarbons (12.1%). The underwater biosphere environment did not alter S. rebaudiana micro-morphological characters, although slight qualitative changes were evidenced for the compounds produced as a response to the growth conditions.
The methanolic extract of the stem bark of a wild species of jujube, Ziziphus lotus (L.) Lam., growing in Sicily, was chemically and biologically investigated. The chemical profile was defined by UHPLC-HR-ESI-Orbitrap/MS analysis whereas antioxidant and tyrosinase inhibitory activities were investigated by in vitro assays. The extract showed a high total phenolic and flavonoid content (TPC=271.65 GAE/g and TFC=188.11 RE/g extract). Metabolomic analysis revealed a rich phytocomplex characterized by phenols, cyclopeptide alkaloids, and triterpenoid saponins, some of which here detected for the first time. The mushroom tyrosinase inhibition assay displayed that the methanolic extract efficiently inhibits the monophenolase and diphenolase activity. Furthermore, the extract showed a strong ability to scavenge DPPH, a good Fe3+ reducing antioxidant power, in addition to a Fe2+ chelating activity. Taken together, these results suggest possible novel applications of wild jujube stem bark as a source of potential skin-care agents with several uses in pharmaceutical and cosmetic industries.
Ammoides altantica (Coss. & Durieu) H.Wolff (Apiaceae) is a herbaceous plant endemic to Algeria, where it is consumed as a spice or used as an ethnobotanic remedy against headache, fever, and diarrhea [1]. Few chemical studies on the plant aerial parts are available in the literature, reporting the chemical composition of essential oil [2] and polar extracts, rich in flavonoids and phenolic acids [3]. Antibacterial, antioxidant, and anti-inflammatory properties were attributed to the investigated plant extracts [4]. The aim of the present study was the investigation of non-polar constituents of A. altantica aerial parts along with their cytotoxicity evaluation. The dried plant material was defatted with n-hexane and extracted with CHCl3 to obtain a raw extract successively fractionated by silica gel column chromatography and RP-HPLC for the isolation of pure compounds. The separation process was assisted by a quali-quantitative analytical investigation by UHPLC coupled to an Orbitrap-based HR-MS. Seven new terpenoids, together with eight known sesquiterpenoids were finally isolated and characterized by 1D and 2D NMR, as well as HR-MS experiments. All compounds were assayed in human tumor cell lines. The known sesquiterpenes epi-tanaphilin, 9α-acetoxyartecanin, and apressin ([Fig. 1]) showed a significant dose-dependent reduction in cell viability on most of the cell lines, especially in A549, A375, and Jurkat. The two most abundant and active compounds, epi-tanaphilin and 9α-acetoxyartecanin, were investigated for their effect on apoptosis and cell cycle. Results showed that both compounds induced a significant (p < 0.001) increase of apoptotic response in a dose-dependent manner.