This paper proposes two new image contrast enhancement methods, RSWHE (Recursively Separated and Weighted Histogram Equalization) and RSWHS (Recursively Separated and Weighted Histogram Specification). RSWHE is a histogram equalization method based on histogram decomposition and weighting, whereas RSWHS is a histogram specification method based on histogram decomposition and weighting. The two proposed methods work as follows: 1) decompose an input histogram based on the image's mean brightness, 2) compute the probability for the area corresponding to each sub-histogram, 3) modify the sub-histogram by weighting it with the computed probability value, 4) lastly, perform histogram equalization (in the case of RSWHE) or histogram specification (in the case of RSWHS) on the modified sub-histograms independently. Experimental results show that RSWHE and RSWHS outperform other methods in terms of contrast enhancement and mean brightness preservation as well.
This paper proposes a new histogram equalization method, called RSWHE (recursively separated and weighted histogram equalization), for brightness preservation and image contrast enhancement. The essential idea of RSWHE is to segment an input histogram into two or more sub-histograms recursively, to modify the sub-histograms by means of a weighting process based on a normalized power law function, and to perform histogram equalization on the weighted sub-histograms independently. RSIHE (recursive sub-image histogram equalization) and RMSHE (recursive mean separate histogram equalization) are some methods similar to RSWHE, but they do not carry out the above weighting process. We show that compared to other existent methods, RSWHE preserves the image brightness more accurately and produces images with better contrast enhancement.
Wang and Ward developed an image contrast enhancement method called WTHE (Weighted and Thresholded Histogram Equalization). In this paper, we propose an improved variant of WTHE called DWTHE(Decomposable WTHE) that enhances WTHE through the use of histogram decomposition. Specifically, DWTHE divides an input histogram by using image's mean brightness or equally-spaced brightness points, computes a probability value for each sub-histogram, modifies the sub-histograms by using those probability values as weights, and then performs histogram equalization on the modified input histogram. As opposed to WTHE that uses a single weight, DWTHE uses multiple weights derived from histogram decomposition. Experimental results show that the proposed method outperforms the previous histogram equalization based methods.