The B0AT2 protein is a product of the SLC6A15 gene belonging to the SLC6 subfamily and has been shown to be a transporter of essential branched-chain amino acids. We aimed to further characterize the B0AT2 transporter in CNS, and to use Slc6a15 knock out (KO) mice to investigate whether B0AT2 is important for mediating the anorexigenic effect of leucine. We used the Slc6a15 KO mice to investigate the role of B0AT2 in brain in response to leucine and in particular the effect on food intake. Slc6a15 KO mice show lower reduction of food intake as well as lower neuronal activation in the ventromedial hypothalamic nucleus (VMH) in response to leucine injections compared to wild type mice. We also used RT-PCR on rat tissues, in situ hybridization and immunohistochemistry on mouse CNS tissues to document in detail the distribution of SLC6A15 on gene and protein levels. We showed that B0AT2 immunoreactivity is mainly neuronal, including localization in many GABAergic neurons and spinal cord motor neurons. B0AT2 immunoreactivity was also found in astrocytes close to ventricles, and co-localized with cytokeratin and diazepam binding inhibitor (DBI) in epithelial cells of the choroid plexus. The data suggest that B0AT2 play a role in leucine homeostasis in the brain.
Abstract Positron emission tomography (PET), a medical imaging technique allowing for studies of the living human brain, has gained an important role in clinical trials of novel drugs against Alzheimer’s disease (AD). For example, PET data contributed to the conditional approval in 2021 of aducanumab , an antibody directed towards amyloid-beta (Aβ) aggregates, by showing a dose-dependent reduction in brain amyloid after treatment. In parallel to clinical studies, preclinical studies in animal models of Aβ pathology may also benefit from PET as a tool to detect target engagement and treatment effects of anti-Aβ drug candidates. PET is associated with a high level of translatability between species as similar, non-invasive protocols allow for longitudinal rather than cross-sectional studies and can be used both in a preclinical and clinical setting. This review focuses on the use of preclinical PET imaging in genetically modified animals that express human Aβ, and its present and potential future role in the development of drugs aimed at reducing brain Aβ levels as a therapeutic strategy to halt disease progression in AD.
SLC18B1 is a sister gene to the vesicular monoamine and acetylcholine transporters, and the only known polyamine transporter, with unknown physiological role. We reveal that Slc18b1 knock out mice has significantly reduced polyamine content in the brain providing the first evidence that Slc18b1 is functionally required for regulating polyamine levels. We found that this mouse has impaired short and long term memory in novel object recognition, radial arm maze and self-administration paradigms. We also show that Slc18b1 KO mice have altered expression of genes involved in Long Term Potentiation, plasticity, calcium signalling and synaptic functions and that expression of components of GABA and glutamate signalling are changed. We further observe a partial resistance to diazepam, manifested as significantly lowered reduction in locomotion after diazepam treatment. We suggest that removal of Slc18b1 leads to reduction of polyamine contents in neurons, resulting in reduced GABA signalling due to long-term reduction in glutamatergic signalling.
The protein alpha-synuclein (αSYN) plays a central role in synucleinopathies such as Parkinsons's disease (PD) and multiple system atrophy (MSA). Presently, there are no selective αSYN positron emission tomography (PET) radioligands that do not also show affinity to amyloid-beta (Aβ). We have previously shown that radiolabeled antibodies, engineered to enter the brain via the transferrin receptor (TfR), is a promising approach for PET imaging of intrabrain targets. In this study, we used this strategy to visualize αSYN in the living mouse brain. Five bispecific antibodies, binding to both the murine TfR and αSYN were generated and radiolabeled with iodine-125 or iodine-124. All bispecific antibodies bound to αSYN and mTfR before and after radiolabelling in an ELISA assay, and bound to brain sections prepared from αSYN overexpressing mice as well as human PD- and MSA subjects, but not control tissues in autoradiography. Brain concentrations of the bispecific antibodies were between 26 and 63 times higher than the unmodified IgG format 2 h post-injection, corresponding to about 1.5% of the injected dose per gram brain tissue. Additionally, intrastriatal αSYN fibrils were visualized with PET in an αSYN deposition mouse model with one of the bispecific antibodies, [124I]RmAbSynO2-scFv8D3. However, PET images acquired in αSYN transgenic mice with verified brain pathology injected with [124I]RmAbSynO2-scFv8D3 and [124I]RmAb48-scFv8D3 showed no increase in antibody retention compared to WT mice. Despite successful imaging of deposited extracellular αSYN using a brain-penetrating antibody-based radioligand with no cross-specificity towards Aβ, this proof-of-concept study demonstrates challenges in imaging intracellular αSYN inclusions present in synucleinopathies.
Visualization of amyloid-β (Aβ) pathology with PET has become an important tool for making a specific clinical diagnosis of Alzheimer disease (AD). However, the available amyloid PET radioligands, such as 11C-Pittsburgh compound B, reflect levels of insoluble Aβ plaques but do not capture soluble and protofibrillar Aβ forms. Furthermore, the plaque load appears to be fairly static during clinical stages of AD and may not be affected by Aβ-reducing treatments. The aim of the present study was to investigate whether a novel PET radioligand based on an antibody directed toward soluble aggregates of Aβ can be used to detect changes in Aβ levels during disease progression and after treatment with a β-secretase (BACE-1) inhibitor. Methods: One set of transgenic mice (tg-ArcSwe, a model of Aβ pathology) aged between 7 and 16 mo underwent PET with the Aβ protofibril–selective radioligand 124I-RmAb158-scFv8D3 (where RmAb is recombinant mouse monoclonal antibody and scFv is single-chain variable fragment) to follow progression of Aβ pathology in the brain. A second set of tg-ArcSwe mice, aged 10 mo, were treated with the BACE-1 inhibitor NB-360 for 3 mo and compared with an untreated control group. A third set of tg-ArcSwe mice, also aged 10 mo, underwent PET as a baseline group. Brain tissue was isolated after PET to determine levels of Aβ by ELISA and immunohistochemistry. Results: The concentration of 124I-RmAb158-scFv8D3, as measured in vivo with PET, increased with age and corresponded well with the ex vivo autoradiography and Aβ immunohistochemistry results. Mice treated with NB-360 showed significantly lower in vivo PET signals than untreated animals and were similar to the baseline animals. The decreased 124I-RmAb158-scFv8D3 concentrations in NB-360–treated mice, as quantified with PET, corresponded well with the decreased Aβ levels measured in postmortem brain. Conclusion: Several treatments for AD are in phase 2 and 3 clinical trials, but the possibility of studying treatment effects in vivo on the important, nonfibrillar, forms of Aβ is limited. This study demonstrated the ability of the Aβ protofibril–selective radioligand 124I-RmAb158-scFv8D3 to follow disease progression and detect treatment effects with PET imaging in tg-ArcSwe mice.