To secure technological competitiveness in shipbuilding and offshore industries, the continuous application and development of various technologies is essential. Efficient scheduling in shipyards is an important management task, whereby materials and manpower are allocated at the appropriate time and to the correct workspace. Although some large shipyards ensure effective scheduling and production management through simulations employing advanced technologies, most shipbuilding industries, including small- and medium-sized shipyards, continue to use an index based on past experiences. However, this legacy index, termed the basic unit, involves poor engineering logic; therefore, it does not appropriately reflect a shipyard’s working environment, which changes rapidly in response to technological developments. Although this has led to a demand for improvements in the basic unit, a clear solution has not been presented thus far. In this study, a method for calculating the man-hours required for assembly, which is the basis for preparing the basic unit, is proposed. First, the assembly process is analyzed, and individual activities involved in the assembly process are quantified and formulated into working hours, which is defined as a production metric. Based on a ship’s computerized block model, the geometric properties and production information required for calculating the metric are generated automatically as far as possible; this is to establish a convenient production metric calculation system. The proposed method features complete applicability in new shipyards through a customization. It also serves as a tool for predicting the metric of new ships or comparisons with those of existing ships.
Ever since the Arctic region has opened its mysterious passage to mankind, continuous attempts to take advantage of its fastest route across the region has been made. The Arctic region is still covered by thick ice and thus finding a feasible navigating route is essential for an economical voyage. To find the optimal route, it is necessary to establish an efficient transit model that enables us to simulate every possible route in advance. In this work, an enhanced algorithm to determine the optimal route in the Arctic region is introduced. A transit model based on the simulated sea ice and environmental data numerically modeled in the Arctic is developed. By integrating the simulated data into a transit model, further applications such as route simulation, cost estimation or hindcast can be easily performed. An interactive simulation system that determines the optimal Arctic route using the transit model is developed. The simulation of optimal routes is carried out and the validity of the results is discussed.
A scalar metric for the assessment of hull surface producibility was known to be useful in estimating the complexity of a hull form of ships or large offshore structures by looking at their shape. However, it could not serve as a comprehensive measuring tool due to its lack of important components of the hull form such as longitudinals, stiffeners, and web frames attached to the hull surface. To have a complete metric for cost estimation, these structural members must be included. In this paper, major inner structural members are considered by measuring the complexity of their geometric shape. The final scalar metric thus consists of the classes containing inner members with various curvature magnitudes as well as the classes containing curved plates with single and double curvature distribution. Those two distinct metrics are merged into a complete scalar metric that accounts for the total cost estimation of complex structural bodies.
A concept of preliminary design for mid-size superyachts is explored. First, the profile of a superyacht is interactively designed with the help of freeform curve functionality and graphical user interface (GUI) based interaction. The hull form is then constructed using major characteristic curves such as design waterline, deck sideline, and sections in addition to the predefined profile curve. After exterior hull modeling is done, the arrangement of significant interior spaces of all decks is carried out. A genetic algorithm is exploited to find a space arrangement by considering space fitness values, space proximity, and stairs connectivity of relevant spaces. A goal of the paper is to offer a step-by-step procedure for superyacht design from scratch or when initial information is not sufficient for complete design. For this purpose, a GUI based superyacht design system is developed. This design approach is expected to help users interactively design mid-size superyachts.
The first Korean-made icebreaking research vessel 'ARAON' had her second sea ice trial in the Arctic Ocean during the summer season of 2010. This paper describes the test procedures to obtain sea ice data which provides basic information to ship's performance in ice-covered sea and estimate the correct ice load/resistance on the IBRV ARAON. The data gathered from sea ice in Chukchi Sea and Beaufort Sea during the Arctic voyage of ARAON includes ice thickness, temperature, density and salinity of sea ice as well as ice strength data. This paper analyses the gathered Arctic sea ice data compared to those from the first voyage of ARAON during her Antarctic Sea ice trial.