Abstract Wilms' tumor, renal cell carcinoma, and neuroblastoma in animals were transplanted from donors to recipients with strong histocompatibility differences. No strong evidence of the privileged site theory was found in this study and no obvious evidence of an immunosuppressive effect of testosterone was found. The most important factor noted in these studies was that the take of tumor transplant seems to be related more to the type of tumor itself. Further studies of transplant results of such different types of tumors are warranted and are being conducted. An interaction between the hormonal supportive concept and the privileged site seems tenable.
In a hybrid PON/xDSL access network, multiple Customer Premise Equipment (CPE) nodes connect over individual Digital Subscriber Lines (DSLs) to a drop-point device. The drop-point device, which is typically reverse powered from the customer, is co-located with an Optical Network Unit (ONU) of the Passive Optical Network (PON). We demonstrate that the drop-point experiences very high buffer occupancies when no flow control or standard Ethernet PAUSE frame flow control is employed. In order to reduce the buffer occupancies in the drop-point, we introduce two gated flow control protocols that extend the polling-based PON medium access control to the DSL segments between the CPEs and the ONUs. We analyze the timing of the gated flow control mechanisms to specify the latest possible time instant when CPEs can start the DSL upstream transmissions so that the ONU can forward the upstream transmissions at the full PON upstream transmission bit rate. Through extensive simulations for a wide range of bursty traffic models, we find that the gated flow control mechanisms, specifically, the ONU and CPE grant sizing policies, enable effective control of the maximum drop-point buffer occupancies.
Abstract Asthma and mouse models of allergic respiratory inflammation are invariably associated with a pulmonary eosinophilia; however, this association has remained correlative. In this report, a causative relationship between eosinophils and allergen-provoked pathologies was established using eosinophil adoptive transfer. Eosinophils were transferred directly into the lungs of either naive or OVA-treated IL-5−/− mice. This strategy resulted in a pulmonary eosinophilia equivalent to that observed in OVA-treated wild-type animals. A concomitant consequence of this eosinophil transfer was an increase in Th2 bronchoalveolar lavage cytokine levels and the restoration of intracellular epithelial mucus in OVA-treated IL-5−/− mice equivalent to OVA-treated wild-type levels. Moreover, the transfer also resulted in the development of airway hyperresponsiveness. These pulmonary changes did not occur when eosinophils were transferred into naive IL-5−/− mice, eliminating nonspecific consequences of the eosinophil transfer as a possible explanation. Significantly, administration of OVA-treated IL-5−/− mice with GK1.5 (anti-CD4) Abs abolished the increases in mucus accumulation and airway hyperresponsiveness following adoptive transfer of eosinophils. Thus, CD4+ T cell-mediated inflammatory signals as well as signals derived from eosinophils are each necessary, yet alone insufficient, for the development of allergic pulmonary pathology. These data support an expanded view of T cell and eosinophil activities and suggest that eosinophil effector functions impinge directly on lung function.
We present OpenTap, a unified interface designed as an Infrastructure layer technology for a software-defined network measurement (SDNM) stack. OpenTap provides invocations for remotely capturing network data at various granularities, such as packet or NetFlow. OpenTap drivers can be developed that leverage open source network measurement tools such as tcpdump and nfdump. OpenTap software can be used to turn any computing device with network interfaces into a remotely controlled network data collection device. Although OpenTap was designed for SDNM, its interface generalizes to any data acquisition thereby providing software-defined data acquisition (SDDA). We illustrate this generality with OpenTap drivers that leverage Phidgets USB sensors to remotely capture environmental data such as temperature. We have completed an implementation of OpenTap that uses a REST API for the invocations. Using that implementation, we study a few use cases of OpenTap for automated network management and network traffic visualizations to characterize its utility for those applications. We find that OpenTap empowers rapid development of software for more complex network measurement functionality at the Control layer such as, joining network data with other sources, and creating network data aggregates such as traffic matrices. OpenTap significantly lowers the cost and development barrier to large-scale data acquisition thereby bringing data acquisition and analytics to an unprecedented number of users. Finally, at the Application layer, network measurement applications such as traffic matrix visualizations are easily implemented leveraging OpenTap at the Infrastructure layer in addition to the Control layer. All of these data processing software systems will be open source and available on GitHub by the time of the conference.
We have generated transgenic mice that constitutively express murine interleukin (IL)-5 in the lung epithelium. Airway expression of this cytokine resulted in a dramatic accumulation of peribronchial eosinophils and striking pathologic changes including the expansion of bronchusassociated lymphoid tissue (BALT), goblet cell hyperplasia, epithelial hypertrophy, and focal collagen deposition. These changes were also accompanied by eosinophil infiltration of the airway lumen. In addition, transgenic animals displayed airway hyperresponsiveness to methacholine in the absence of aerosolized antigen challenge. These findings demonstrate that lung-specific IL-5 expression can induce pathologic changes characteristic of asthma and may provide useful models to evaluate the efficacy of potential respiratory disease therapies or pharmaceuticals.
We have conducted a sensitivity analysis to determine the PSNR reduction occurring from increased levels of hand jitter while recording video. To conduct this sensitivity analysis we proposed and utilized a hand jitter model. We observe from our analysis that increased hand jitter certainly lowers the PSNR. More importantly, we observe that the magnitude of the reduction in PSNR of increasing hand jitter is increased with less motion in the video. With this insight we developed a decision rule that decides when to activate a video stabilization algorithm. This decision rule requires the distinction between motion created by the scene and motion created by hand jitter as well as a mechanism to measure this motion.