Abstract Soil net nitrogen mineralization rate (N min ), which is critical for soil nitrogen availability and plant growth, is thought to be primarily controlled by climate and soil physical and/or chemical properties. However, the role of microbes on regulating soil N min has not been evaluated on the global scale. By compiling 1565 observational data points of potential net N min from 198 published studies across terrestrial ecosystems, we found that N min significantly increased with soil microbial biomass, total nitrogen, and mean annual precipitation, but decreased with soil pH. The variation of N min was ascribed predominantly to soil microbial biomass on global and biome scales. Mean annual precipitation, soil pH, and total soil nitrogen significantly influenced N min through soil microbes. The structural equation models ( SEM ) showed that soil substrates were the main factors controlling N min when microbial biomass was excluded. Microbe became the primary driver when it was included in SEM analysis. SEM with soil microbial biomass improved the N min prediction by 19% in comparison with that devoid of soil microbial biomass. The changes in N min contributed the most to global soil NH 4 + ‐N variations in contrast to climate and soil properties. This study reveals the complex interactions of climate, soil properties, and microbes on N min and highlights the importance of soil microbial biomass in determining N min and nitrogen availability across the globe. The findings necessitate accurate representation of microbes in Earth system models to better predict nitrogen cycle under global change.
Abstract The vertical structural complexity (VSC) of plant communities reflects the occupancy of spatial niches and is closely related to resource utilization and environmental adaptation. However, understanding the large-scale spatial pattern of VSC and its underlying mechanisms remains limited. Here, we systematically investigate 2013 plant communities through grid sampling on the Tibetan Plateau. VSC is quantified as the maximum plant height within a plot (Height-max), coefficient of variation of plant height (Height-var), and Shannon evenness of plant height (Height-even). Precipitation dominates the spatial variation in VSC in forests and shrublands, supporting the classic physiological tolerance hypothesis. In contrast, for alpine meadows, steppes, and desert grasslands in extreme environments, non-resource limiting factors (e.g., wide diurnal temperature ranges and strong winds) dominate VSC variation. Generally, with the shifting of climate from favorable to extreme, the effect of resource availability gradually decreases, but the effect of non-resource limiting factors gradually increases, and that the physiological tolerance hypothesis only applicable in favorable conditions. With the help of machine learning models, maps of VSC at 1-km resolution are produced for the Tibetan Plateau. Our findings and maps of VSC provide insights into macroecological studies, especially for adaptation mechanisms and model optimization.
Abstract Leaf traits may reflect the adaptation mechanisms of plants to the environment. In this study, we investigated leaf morphological and anatomical traits in nine cold-temperate to tropical forests along a 4,200-km transect to test how they vary across latitudinal gradients. The results showed that leaf dry weight decreased ( P < 0.05), while specific leaf area (SLA) increased ( P < 0.05) with increasing latitude. Stomatal length and stomatal density did not change significantly, while stomatal pore area index increased ( P < 0.05) with increasing latitude. The palisade-leaf mesophyll thickness ratio increased ( P < 0.01), while the spongy-leaf mesophyll thickness ratio decreased, with increasing latitude ( P < 0.01). Climate and leaf nutrients were the main factors that regulated leaf morphological and anatomical traits. Furthermore, we identified positive correlations between leaf area and leaf dry weight, leaf thickness and palisade mesophyll thickness, but negative correlations between stomatal length and stomatal density (all P < 0.01). The observed negative correlations represented the adaptive mechanisms of leaves through their morphological and anatomical traits. These findings provided new insights into the responses of leaf morphological and anatomical traits to climate changes and important parameters for future model optimization.
Nitrogen (N) enrichment caused by human activities threatens biodiversity and alters plant community composition and structure. It has been found that heavy and infrequent N inputs may over-estimate species extinction, but it remains unclear whether plant community structure will equally respond to frequent reactive N enriched conditions. We independently manipulated the rates and the frequencies of N addition in a temperate steppe, northern China, between 2008 and 2013. We found that plant community structure changes, measured by 'Euclidean distance' involving species richness, composition and productivity, were significantly positively related to increasing N enrichment rates rather than frequencies. Changes in aboveground net primary productivity (ANPP), plant species richness and shifts in dominant species were observed. Community ANPP increased with N enrichment, whereas species richness reduced. The frequency of N enrichment increased species richness but had no impacts on community ANPP and the relative ANPP of the two dominant species, C3 perennial bunchgrass Stipa grandis and C3 perennial rhizome grass Leymus chinensis. The ANPP and relative ANPP of the two dominant species were significantly negatively correlated with each other. Moreover, changes in the relative ANPP of S. grandis was negatively associated with the changes in community structure. After 5 years' treatment, direct influence of the frequency of N enrichment on plant community structure was not observed, but the effects of the rate of N enrichment were apparent. Our results suggested that further study in various ecosystems and with long-term and well-controlled comparisons the frequency vs. the rate of N enrichment may still be needed.