We performed a thorough fit-for-purpose evaluation of commercial ELISAs for the detection of bovine viral diarrhea virus (BVDV)-specific antibodies in serum and in milk by testing 2 panels of well-characterized serum and milk samples. Sixteen ELISAs from 9 different manufacturers, available on the Belgian market at the time of our study, were assessed for their diagnostic and analytical sensitivity (DSe and ASe, respectively), diagnostic specificity (DSp), and repeatability relative to the virus neutralization (VN) test considered to be the gold standard assay. Using serum as a matrix, DSe was much lower for competitive (c)ELISAs (min. 45%, max. 65%) than for indirect (i)ELISAs (min. 85%, max. 100%), partly because of the lower detection of positive samples from vaccinated animals included in the panel. ASe was also better for iELISAs; DSp was >95% for all but 2 ELISAs. Repeatability, expressed as coefficients of variation (CV) of optical densities, was generally good, although 3 ELISAs had a mean CV >10%. With milk samples, as observed for serum, DSe was lower for cELISAs (min. 57%, max. 75%) than for iELISAs (min. 61%, max. 89%), and DSp was high for all ELISAs (min. 94%, max. 100%). Both DSe and ASe were lower when testing milk samples compared to serum samples. These results confirm that serologic monitoring of BVDV-free herds should be performed using serum samples of unvaccinated animals to avoid interference of vaccination and to maximize the chance of detecting seroconversion linked to BVDV infection. Further investigations using a larger collection of field samples are recommended.
Since the introduction in Georgia in 2007 of an African swine fever (ASF) genotype 2 virus strain, the virus has rapidly spread to both Western European and Asian countries. It now constitutes a major threat for the global swine industry. The ongoing European transmission cycle has been related to the 'wild boar habitat' with closed transmission events between wild boar populations and incidental spillovers to commercial and non-commercial (backyard) pig holdings. During the epidemic in Belgium, only wild boar were infected and although the introduction route has not yet been elucidated, the 'human factor' is highly suspected. While ASF was successfully contained in a small region in the Southern part of Belgium without affecting domestic pigs, the risk of spillover at the wild/domestic interface remains poorly assessed. In this study, we used a semi-quantitative method, involving national and international experts, to assess the risk associated with different transmission routes for ASF introduction from wild boar to domestic pig holdings and subsequent dissemination between holdings in the Belgian epidemiological context. Qualitative responses obtained by our questionnaire were numerically transformed and statistically processed to provide a semi-quantitative assessment of the occurrence of the hazard and a ranking of all transmission routes. 'Farmer', 'bedding material', 'veterinarian' and 'professionals from the pig sector' were considered as the most important transmission routes for ASF introduction from the wild reservoir to pig holdings. 'Animal movements', 'farmer', 'veterinarian', 'iatrogenic', 'animal transport truck' and 'animal care equipment' were considered as the most important transmission routes posing a risk of ASF spread between pig holdings. Combined with specific biosecurity checks in the holdings, this assessment helps in prioritizing risk mitigation measures against ASF introduction and further spread in the domestic pig industry, particularly while the ASF situation in Western Europe is worsening.
Border disease virus (BDV) is a pestivirus responsible for significant economic losses in sheep industry. The present study was conducted between 2015 and 2016 to determine the flock seroprevalence of the disease in Algeria and to identify associated risk factors. 56 flocks from nine departments were visited and 689 blood samples were collected from adult sheep between 6 and 24 months of age (n = 576) and from lambs younger than 6 months (n = 113). All samples were tested by RT-PCR as well as by Ag-ELISA, to detect Persistently Infected (PI) animals. Serum samples from adults were tested by Ab-ELISA (Enzyme Linked Immuno-Sorbent Assay), to detect specific antibodies against pestivirus and 197 of them were further characterized by VNT (virus neutralization test) for the detection of neutralizing antibodies specific for BDV and for Bovine virus diarrhea virus (BVDV-1 and BVDV-2). No PI animals were found among the 689 sheep tested. 144/197 sera were positive in VNT for BDV, and 2 sera were strongly positive BVDV-2. Fifty-five flocks (98%) had at least one seropositive animal and the apparent within-flock seroprevalence was estimated to be 60.17% (95% C.I.: 52.96–66.96). The true seroprevalence based on estimated sensitivity and specificity of the Ab-ELISA was 68.20% (95% C.I.; 60.2–76.3). Several risk factors were identified as linked to BDV such as climate, landscape, flock management and presence of other ruminant species in the farm. These high seroprevalence rates suggest that BDV is widespread and is probably endemic all over the country. Further studies are needed to detect and isolate the virus strains circulating in the country and understand the distribution and impact of pestiviruses in the Algerian livestock.
Schmallenberg virus (SBV) is an Orthobunyavirus that induces abortion, stillbirths and congenital malformations in ruminants. SBV infection induces a long lasting seroconversion under natural conditions. The persistence of the protective immunity and the isotype specific antibody response upon SBV infection of sheep has however not been studied in detail. Five sheep were kept in BSL3 facilities for more than 16 months and subjected to repeated SBV infections. Blood was regularly sampled and organs were collected at euthanasia. The presence of SBV RNA in serum and organs was measured with quantitative real-time PCR. The appearance and persistence of neutralizing and SBV nucleoprotein (N) isotype specific antibodies was determined with virus neutralization tests (VNT) and ELISAs. The primo SBV infection protected ewes against clinical signs, viraemia and virus replication in organs upon challenge infections more than 15 months later. Production of neutralizing SBV specific antibodies was first detected around 6 days post primo-inoculation with VNT and correlated with the appearance of SBV-N specific IgM antibodies. These IgM antibodies remained present for 2 weeks. SBV-N specific IgG antibodies were first detected between 10 and 21 dpi and reached a plateau at 28 dpi. This plateau remained consistently high and no significant decrease in titre was found over a period of more than 1 year. Similar results were found for the neutralising antibody response. In conclusion, the SBV specific IgM response probably eliminates SBV from the blood and the protective immunity induced by SBV infection protects sheep against reinfection for at least 16 months.
The severity of clinical symptoms induced by pseudorabies virus (PRV) infection of its natural host is inversely related to the age of the pig. During this study, 2- and 15-week-old pigs were inoculated with PRV strain NIA3. This resulted in important clinical disease, although the associated morbidity and mortality were lower in older pigs. Quantitative PCR analysis of viral DNA in different organs confirmed the general knowledge on PRV pathogenesis. Several new findings and potential explanations for the observed age-dependent differences in virulence, however, were determined from the study of viral and cytokine mRNA expression at important sites of neuropathogenesis. First, only limited viral and cytokine mRNA expression was detected in the nasal mucosa, suggesting that other sites may serve as the primary replication site. Second, PRV reached the trigeminal ganglion (TG) and brain stem rapidly upon infection but, compared to 2-week-old pigs, viral replication was less pronounced in 15-week-old pigs, and the decrease in viral mRNA expression was not preceded by or associated with an increased cytokine expression. Third, extensive viral replication associated with a robust expression of cytokine mRNA was detected in the olfactory bulbs of pigs from both age categories and correlated with the observed neurological disease. Our results suggest that age-dependent differences in PRV-induced clinical signs are probably due to enhanced viral replication and associated immunopathology in immature TG and the central nervous system neurons of 2-week-old pigs and that neurological disease is related with extensive viral replication and an associated immune response in the olfactory bulb.It is well known that alphaherpesvirus infections of humans and animals result in more severe clinical disease in newborns than in older individuals and that this is probably related to differences in neuropathogenesis. The underlying mechanisms, however, remain unclear. Pseudorabies virus infection of its natural host, the pig, provides a suitable infection model to study this more profoundly. We show here that the severe neurological disease observed in 2-week-old pigs does not appear to be related to a hampered innate immune response but is more likely to reflect the immature development state of the trigeminal ganglia (TG) and central nervous system (CNS) neurons, resulting in an inefficient suppression of viral replication. In 15-week-old pigs, viral replication was efficiently suppressed in the TG and CNS without induction of an extensive immune response. Furthermore, our results provide evidence that neurological disease could, at least in part, be related to viral replication and associated immunopathology in the olfactory bulb.