Background Co-circulation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other respiratory viruses, such as influenza and respiratory syncytial virus (RSV), can be a severe threat to public health. The accurate detection and differentiation of these viruses are essential for clinical laboratories. Herein, we comparatively evaluated the performance of the Kaira COVID-19/Flu/RSV Detection Kit (Kaira; Optolane, Seongnam, Korea) for detection of SARS-CoV-2, influenza A and B, and RSV in nasopharyngeal swab (NPS) specimens with that of the PowerChek SARS-CoV-2, Influenza A&B, RSV Multiplex Real-time PCR Kit (PowerChek; Kogene Biotech, Seoul, Korea). Methods A total of 250 archived NPS specimens collected for routine clinical testing were tested in parallel by the Kaira and PowerChek assays. RNA standards were serially diluted and tested by the Kaira assay to calculate the limit of detection (LOD). Results The positive and negative percent agreements between the Kaira and PowerChek assays were as follows: 100% (49/49) and 100% (201/201) for SARS-CoV-2; 100% (50/50) and 99.0% (198/200) for influenza A; 100% (50/50) and 100% (200/200) for influenza B; and 100% (51/51) and 100% (199/199) for RSV, respectively. The LODs of the Kaira assay for SARS-CoV-2, influenza A and B, and RSV were 106.1, 717.1, 287.3, and 442.9 copies/mL, respectively. Conclusions The Kaira assay showed comparable performance to the PowerChek assay for detection of SARS-CoV-2, influenza A and B, and RSV in NPS specimens, indicating that the Kaira assay could be a useful diagnostic tool when these viruses are co-circulating.
Congenital cytomegalovirus (CMV) infection is a common cause of sensorineural hearing loss and neurodevelopmental impairment in newborns. However, congenital CMV infection cannot be diagnosed using samples collected more than 3 weeks after birth because testing after this time cannot distinguish between congenital infection and postnatal infection. Herein, we developed a robust loop-mediated isothermal amplification (LAMP) assay for the large-scale screening of newborns for congenital CMV infection. In contrast to conventional quantitative polymerase chain reaction (qPCR), which detects CMV within a dynamic range of 1.0 × 106 to 1.0 × 102 copies/μL, our quantitative LAMP assay (qLAMP) detects CMV within a dynamic range of 1.1 × 108 to 1.1 × 103 copies/μL. Moreover, the turnaround time for obtaining results following DNA extraction is 90 min in qPCR but only 15 min in qLamp. The colorimetric LAMP assay can also detect CMV down to 1.1 × 103 copies/μL within 30 min, irrespective of the type of heat source. Our LAMP assay can be utilized in central laboratories as an alternative to conventional qPCR for quantitative CMV detection, or for point-of-care testing in low-resource environments, such as developing countries, via colorimetric naked-eye detection. KEY POINTS: • LAMP assay enables large-scale screening of newborns for congenital CMV infection. • LAMP allows colorimetric or quantitative detection of congenital CMV infection. • LAMP assay can be used as a point-of-care testing tool in low-resource environments.
Unlike monometallic materials, bimetallic plasmonic materials offer extensive benefits such as broadband tuning capability or high environmental stability. Here we report a broad range tuning of plasmon resonance of alloyed nanoislands by using solid-state dewetting of gold and silver bilayer thin films. Thermal dewetting after successive thermal evaporation of thin metal double-layer films readily forms AuAg-alloyed nanoislands with a precise composition ratio. The complete miscibility of alloyed nanoislands results in programmable tuning of plasmon resonance wavelength in a broadband visible range. Such extraordinary tuning capability opens up a new direction for plasmonic enhancement in biophotonic applications such as surface-enhanced Raman scattering or plasmon-enhanced fluorescence.
Rapid detection-method for Shiga toxin type 1 that was produced from Shiga toxin-producing Escherichia coli (STEC) was developed by two-step ultra-rapid real-time (URRT) PCR. The specific primers were deduced from 80 bp stable region of stx type 1 (stxl) gene among various informations of STEC strains. URRT PCR is a microchip-based real-time PCR using 6 of reaction volume with extremely short denaturation step and annealing/extension step (1 sec, 3 sec, respectively) in each cycle of PCR. Using the stx1-specific URRT PCR, 35 cycled PCR were finished in time of 6 min and 38 see, also measured 7 min and 28 see including melting temperature (Tm) analysis. The detection-limit of stxl-specific URRT-PCR was estimated until 3 colony forming units / PCR with products with stable Tm at . In the applications to various STEC strains and contaminated genomic DNAs, stx1-specific URRT-PCR were tested and shown that it would be expected an useful method for the rapid detection of stx1-coded STEC strains.